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Document Transcription
Aduertencias para 

como parece manifieſto en las palabras de S. 
Ioan, que dize. Tres ſunt qui teſtimoniu dãt 
in cœlo Pater, Verbum, & Spiritus ſanctus: 
& hi tres vnum ſunt. 1. Ioann. vltimo. Por 
lo qual deuen ſer inſtruydos y enſeñados, que 
todas tres diuinas perſonas ſon vn Dios ver- 
dadero: o reformando la ſobre dicha propoſ 
ſicion, y añadiendo eſta palabra. In huel ime 
ixtintzitzin, con que ſe quita toda amphibo- 
logia y duda diziendo. In Dios, ca Tettatzin 
Tepiltzin, Spiritu ſancto, ei perſonas, çan ce 
huelnelli tuetl Dios, in huel imeixtintzitzin, 
q. d. Dios es Padre, Hijo, y Spu ſancto tres 
perſonas, vn ſolo Dios verdadero todas tres, 
cõ la qual reduplicacion ſe quita toda dubda. 
Tambien ſe quita con eſtas propoſsiciones. 
In DIOS, ca Tettatzin, Tepiltzin, Spiritu ſan 
cto, çan huel iceltzin teutl Dios tlahtohuani. 
In Dios, ca Tettatzin, Tepiltzin, Spirìtu ſan 
cto, imeixtin perſonas çan huel iceltzin Dios 
tlahtohuanì. Ca inimeixtin perſonas me ca- 
çan huel iceltzin teutl Dios tlahtohuani in- 
huel imeixtin. ¶Otros reſponden [y es e 
ſegundo error] ça ce Dios tlahtohuani, imme 
teihttotica, y a alguos de ſus miniſtros les ha 
pareſcido el meteihttotica, vn vocablo en ſi di 

uino
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Linguistic Noise

Code switching    (multilinguality)

Orthographic variation   (cross-linguality)



x x x

Primeros Libros
Books printed in Mexico in the 1500s
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1. What makes the problem hard 

2. How we model the problem 

3. Implications for the humanities
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Visual Noise

Unsupervised Transcription of Historical Documents

Taylor Berg-Kirkpatrick Greg Durrett Dan Klein
Computer Science Division

University of California at Berkeley
{tberg,gdurrett,klein}@cs.berkeley.edu

Abstract

We present a generative probabilistic
model, inspired by historical printing pro-
cesses, for transcribing images of docu-
ments from the printing press era. By
jointly modeling the text of the docu-
ment and the noisy (but regular) process
of rendering glyphs, our unsupervised sys-
tem is able to decipher font structure and
more accurately transcribe images into
text. Overall, our system substantially out-
performs state-of-the-art solutions for this
task, achieving a 31% relative reduction
in word error rate over the leading com-
mercial system for historical transcription,
and a 47% relative reduction over Tesser-
act, Google’s open source OCR system.

1 Introduction

Standard techniques for transcribing modern doc-
uments do not work well on historical ones. For
example, even state-of-the-art OCR systems pro-
duce word error rates of over 50% on the docu-
ments shown in Figure 1. Unsurprisingly, such er-
ror rates are too high for many research projects
(Arlitsch and Herbert, 2004; Shoemaker, 2005;
Holley, 2010). We present a new, generative
model specialized to transcribing printing-press
era documents. Our model is inspired by the un-
derlying printing processes and is designed to cap-
ture the primary sources of variation and noise.

One key challenge is that the fonts used in his-
torical documents are not standard (Shoemaker,
2005). For example, consider Figure 1a. The fonts
are not irregular like handwriting – each occur-
rence of a given character type, e.g. a, will use the
same underlying glyph. However, the exact glyphs
are unknown. Some differences between fonts are
minor, reflecting small variations in font design.
Others are more severe, like the presence of the
archaic long s character before 1804. To address
the general problem of unknown fonts, our model

(a)

(b)

(c)
Figure 1: Portions of historical documents with (a) unknown
font, (b) uneven baseline, and (c) over-inking.

learns the font in an unsupervised fashion. Font
shape and character segmentation are tightly cou-
pled, and so they are modeled jointly.

A second challenge with historical data is that
the early typesetting process was noisy. Hand-
carved blocks were somewhat uneven and often
failed to sit evenly on the mechanical baseline.
Figure 1b shows an example of the text’s baseline
moving up and down, with varying gaps between
characters. To deal with these phenomena, our
model incorporates random variables that specifi-
cally describe variations in vertical offset and hor-
izontal spacing.

A third challenge is that the actual inking was
also noisy. For example, in Figure 1c some charac-
ters are thick from over-inking while others are ob-
scured by ink bleeds. To be robust to such render-
ing irregularities, our model captures both inking
levels and pixel-level noise. Because the model
is generative, we can also treat areas that are ob-
scured by larger ink blotches as unobserved, and
let the model predict the obscured text based on
visual and linguistic context.

Our system, which we call Ocular, operates by
fitting the model to each document in an unsuper-
vised fashion. The system outperforms state-of-
the-art baselines, giving a 47% relative error re-
duction over Google’s open source Tesseract sys-
tem, and giving a 31% relative error reduction over
ABBYY’s commercial FineReader system, which
has been used in large-scale historical transcrip-
tion projects (Holley, 2010).
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One key challenge is that the fonts used in his-
torical documents are not standard (Shoemaker,
2005). For example, consider Figure 1a. The fonts
are not irregular like handwriting – each occur-
rence of a given character type, e.g. a, will use the
same underlying glyph. However, the exact glyphs
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minor, reflecting small variations in font design.
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Figure 1: Portions of historical documents with (a) unknown
font, (b) uneven baseline, and (c) over-inking.

learns the font in an unsupervised fashion. Font
shape and character segmentation are tightly cou-
pled, and so they are modeled jointly.

A second challenge with historical data is that
the early typesetting process was noisy. Hand-
carved blocks were somewhat uneven and often
failed to sit evenly on the mechanical baseline.
Figure 1b shows an example of the text’s baseline
moving up and down, with varying gaps between
characters. To deal with these phenomena, our
model incorporates random variables that specifi-
cally describe variations in vertical offset and hor-
izontal spacing.

A third challenge is that the actual inking was
also noisy. For example, in Figure 1c some charac-
ters are thick from over-inking while others are ob-
scured by ink bleeds. To be robust to such render-
ing irregularities, our model captures both inking
levels and pixel-level noise. Because the model
is generative, we can also treat areas that are ob-
scured by larger ink blotches as unobserved, and
let the model predict the obscured text based on
visual and linguistic context.

Our system, which we call Ocular, operates by
fitting the model to each document in an unsuper-
vised fashion. The system outperforms state-of-
the-art baselines, giving a 47% relative error re-
duction over Google’s open source Tesseract sys-
tem, and giving a 31% relative error reduction over
ABBYY’s commercial FineReader system, which
has been used in large-scale historical transcrip-
tion projects (Holley, 2010).

Irregular alignment

Too little or too much ink
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tem is able to decipher font structure and
more accurately transcribe images into
text. Overall, our system substantially out-
performs state-of-the-art solutions for this
task, achieving a 31% relative reduction
in word error rate over the leading com-
mercial system for historical transcription,
and a 47% relative reduction over Tesser-
act, Google’s open source OCR system.

1 Introduction

Standard techniques for transcribing modern doc-
uments do not work well on historical ones. For
example, even state-of-the-art OCR systems pro-
duce word error rates of over 50% on the docu-
ments shown in Figure 1. Unsurprisingly, such er-
ror rates are too high for many research projects
(Arlitsch and Herbert, 2004; Shoemaker, 2005;
Holley, 2010). We present a new, generative
model specialized to transcribing printing-press
era documents. Our model is inspired by the un-
derlying printing processes and is designed to cap-
ture the primary sources of variation and noise.

One key challenge is that the fonts used in his-
torical documents are not standard (Shoemaker,
2005). For example, consider Figure 1a. The fonts
are not irregular like handwriting – each occur-
rence of a given character type, e.g. a, will use the
same underlying glyph. However, the exact glyphs
are unknown. Some differences between fonts are
minor, reflecting small variations in font design.
Others are more severe, like the presence of the
archaic long s character before 1804. To address
the general problem of unknown fonts, our model

(a)

(b)

(c)
Figure 1: Portions of historical documents with (a) unknown
font, (b) uneven baseline, and (c) over-inking.

learns the font in an unsupervised fashion. Font
shape and character segmentation are tightly cou-
pled, and so they are modeled jointly.

A second challenge with historical data is that
the early typesetting process was noisy. Hand-
carved blocks were somewhat uneven and often
failed to sit evenly on the mechanical baseline.
Figure 1b shows an example of the text’s baseline
moving up and down, with varying gaps between
characters. To deal with these phenomena, our
model incorporates random variables that specifi-
cally describe variations in vertical offset and hor-
izontal spacing.

A third challenge is that the actual inking was
also noisy. For example, in Figure 1c some charac-
ters are thick from over-inking while others are ob-
scured by ink bleeds. To be robust to such render-
ing irregularities, our model captures both inking
levels and pixel-level noise. Because the model
is generative, we can also treat areas that are ob-
scured by larger ink blotches as unobserved, and
let the model predict the obscured text based on
visual and linguistic context.

Our system, which we call Ocular, operates by
fitting the model to each document in an unsuper-
vised fashion. The system outperforms state-of-
the-art baselines, giving a 47% relative error re-
duction over Google’s open source Tesseract sys-
tem, and giving a 31% relative error reduction over
ABBYY’s commercial FineReader system, which
has been used in large-scale historical transcrip-
tion projects (Holley, 2010).
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Unknown Fonts
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These are all ‘a’s from one page of one book:

Unknown Fonts
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Starting Point: Ocular

[Berg-Kirkpatrick et al. 2013]

Generative Model in 3 parts: 

1. Language model 

2. Typesetting model 

3. Rendering model
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Language Model

Over-inked

It appeared that the Prisoner was veryE :

X :

Wandering baseline Historical font

Figure 2: An example image from a historical document (X)
and its transcription (E).

2 Related Work

Relatively little prior work has built models specif-
ically for transcribing historical documents. Some
of the challenges involved have been addressed
(Ho and Nagy, 2000; Huang et al., 2006; Kae and
Learned-Miller, 2009), but not in a way targeted
to documents from the printing press era. For ex-
ample, some approaches have learned fonts in an
unsupervised fashion but require pre-segmentation
of the image into character or word regions (Ho
and Nagy, 2000; Huang et al., 2006), which is not
feasible for noisy historical documents. Kae and
Learned-Miller (2009) jointly learn the font and
image segmentation but do not outperform mod-
ern baselines.

Work that has directly addressed historical doc-
uments has done so using a pipelined approach,
and without fully integrating a strong language
model (Vamvakas et al., 2008; Kluzner et al.,
2009; Kae et al., 2010; Kluzner et al., 2011).
The most comparable work is that of Kopec and
Lomelin (1996) and Kopec et al. (2001). They
integrated typesetting models with language mod-
els, but did not model noise. In the NLP com-
munity, generative models have been developed
specifically for correcting outputs of OCR systems
(Kolak et al., 2003), but these do not deal directly
with images.

A closely related area of work is automatic de-
cipherment (Ravi and Knight, 2008; Snyder et al.,
2010; Ravi and Knight, 2011; Berg-Kirkpatrick
and Klein, 2011). The fundamental problem is
similar to our own: we are presented with a se-
quence of symbols, and we need to learn a corre-
spondence between symbols and letters. Our ap-
proach is also similar in that we use a strong lan-
guage model (in conjunction with the constraint
that the correspondence be regular) to learn the
correct mapping. However, the symbols are not
noisy in decipherment problems and in our prob-
lem we face a grid of pixels for which the segmen-
tation into symbols is unknown. In contrast, deci-
pherment typically deals only with discrete sym-
bols.

3 Model
Most historical documents have unknown fonts,
noisy typesetting layouts, and inconsistent ink lev-
els, usually simultaneously. For example, the por-
tion of the document shown in Figure 2 has all
three of these problems. Our model must handle
them jointly.

We take a generative modeling approach in-
spired by the overall structure of the historical
printing process. Our model generates images of
documents line by line; we present the generative
process for the image of a single line. Our pri-
mary random variables are E (the text) and X (the
pixels in an image of the line). Additionally, we
have a random variable T that specifies the layout
of the bounding boxes of the glyphs in the image,
and a random variable R that specifies aspects of
the inking and rendering process. The joint distri-
bution is:

P (E, T, R, X) =

P (E) [Language model]
· P (T |E) [Typesetting model]
· P (R) [Inking model]
· P (X|E, T, R) [Noise model]

We let capital letters denote vectors of concate-
nated random variables, and we denote the indi-
vidual random variables with lower-case letters.
For example, E represents the entire sequence of
text, while ei represents ith character in the se-
quence.

3.1 Language Model P (E)

Our language model, P (E), is a Kneser-Ney
smoothed character n-gram model (Kneser and
Ney, 1995). We generate printed lines of text
(rather than sentences) independently, without
generating an explicit stop character. This means
that, formally, the model must separately generate
the character length of each line. We choose not to
bias the model towards longer or shorter character
sequences and let the line length m be drawn uni-
formly at random from the positive integers less
than some large constant M.1 When i < 1, let ei
denote a line-initial null character. We can now
write:

P (E) = P (m) ·
mY

i=1

P (ei|ei�1, . . . , ei�n)

1In particular, we do not use the kind of “word bonus”
common to statistical machine translation models.

E p r i s o n

[Berg-Kirkpatrick et al. 2013]Slide courtesy of Taylor Berg-Kirkpatrick 

Ocular’s Generative Model



x x x

Language Model

Over-inked

It appeared that the Prisoner was veryE :

X :

Wandering baseline Historical font

Figure 2: An example image from a historical document (X)
and its transcription (E).

2 Related Work

Relatively little prior work has built models specif-
ically for transcribing historical documents. Some
of the challenges involved have been addressed
(Ho and Nagy, 2000; Huang et al., 2006; Kae and
Learned-Miller, 2009), but not in a way targeted
to documents from the printing press era. For ex-
ample, some approaches have learned fonts in an
unsupervised fashion but require pre-segmentation
of the image into character or word regions (Ho
and Nagy, 2000; Huang et al., 2006), which is not
feasible for noisy historical documents. Kae and
Learned-Miller (2009) jointly learn the font and
image segmentation but do not outperform mod-
ern baselines.

Work that has directly addressed historical doc-
uments has done so using a pipelined approach,
and without fully integrating a strong language
model (Vamvakas et al., 2008; Kluzner et al.,
2009; Kae et al., 2010; Kluzner et al., 2011).
The most comparable work is that of Kopec and
Lomelin (1996) and Kopec et al. (2001). They
integrated typesetting models with language mod-
els, but did not model noise. In the NLP com-
munity, generative models have been developed
specifically for correcting outputs of OCR systems
(Kolak et al., 2003), but these do not deal directly
with images.

A closely related area of work is automatic de-
cipherment (Ravi and Knight, 2008; Snyder et al.,
2010; Ravi and Knight, 2011; Berg-Kirkpatrick
and Klein, 2011). The fundamental problem is
similar to our own: we are presented with a se-
quence of symbols, and we need to learn a corre-
spondence between symbols and letters. Our ap-
proach is also similar in that we use a strong lan-
guage model (in conjunction with the constraint
that the correspondence be regular) to learn the
correct mapping. However, the symbols are not
noisy in decipherment problems and in our prob-
lem we face a grid of pixels for which the segmen-
tation into symbols is unknown. In contrast, deci-
pherment typically deals only with discrete sym-
bols.

3 Model
Most historical documents have unknown fonts,
noisy typesetting layouts, and inconsistent ink lev-
els, usually simultaneously. For example, the por-
tion of the document shown in Figure 2 has all
three of these problems. Our model must handle
them jointly.

We take a generative modeling approach in-
spired by the overall structure of the historical
printing process. Our model generates images of
documents line by line; we present the generative
process for the image of a single line. Our pri-
mary random variables are E (the text) and X (the
pixels in an image of the line). Additionally, we
have a random variable T that specifies the layout
of the bounding boxes of the glyphs in the image,
and a random variable R that specifies aspects of
the inking and rendering process. The joint distri-
bution is:

P (E, T, R, X) =

P (E) [Language model]
· P (T |E) [Typesetting model]
· P (R) [Inking model]
· P (X|E, T, R) [Noise model]

We let capital letters denote vectors of concate-
nated random variables, and we denote the indi-
vidual random variables with lower-case letters.
For example, E represents the entire sequence of
text, while ei represents ith character in the se-
quence.

3.1 Language Model P (E)

Our language model, P (E), is a Kneser-Ney
smoothed character n-gram model (Kneser and
Ney, 1995). We generate printed lines of text
(rather than sentences) independently, without
generating an explicit stop character. This means
that, formally, the model must separately generate
the character length of each line. We choose not to
bias the model towards longer or shorter character
sequences and let the line length m be drawn uni-
formly at random from the positive integers less
than some large constant M.1 When i < 1, let ei
denote a line-initial null character. We can now
write:

P (E) = P (m) ·
mY

i=1

P (ei|ei�1, . . . , ei�n)

1In particular, we do not use the kind of “word bonus”
common to statistical machine translation models.

E
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Over-inked

It appeared that the Prisoner was veryE :
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Figure 2: An example image from a historical document (X)
and its transcription (E).

2 Related Work

Relatively little prior work has built models specif-
ically for transcribing historical documents. Some
of the challenges involved have been addressed
(Ho and Nagy, 2000; Huang et al., 2006; Kae and
Learned-Miller, 2009), but not in a way targeted
to documents from the printing press era. For ex-
ample, some approaches have learned fonts in an
unsupervised fashion but require pre-segmentation
of the image into character or word regions (Ho
and Nagy, 2000; Huang et al., 2006), which is not
feasible for noisy historical documents. Kae and
Learned-Miller (2009) jointly learn the font and
image segmentation but do not outperform mod-
ern baselines.

Work that has directly addressed historical doc-
uments has done so using a pipelined approach,
and without fully integrating a strong language
model (Vamvakas et al., 2008; Kluzner et al.,
2009; Kae et al., 2010; Kluzner et al., 2011).
The most comparable work is that of Kopec and
Lomelin (1996) and Kopec et al. (2001). They
integrated typesetting models with language mod-
els, but did not model noise. In the NLP com-
munity, generative models have been developed
specifically for correcting outputs of OCR systems
(Kolak et al., 2003), but these do not deal directly
with images.

A closely related area of work is automatic de-
cipherment (Ravi and Knight, 2008; Snyder et al.,
2010; Ravi and Knight, 2011; Berg-Kirkpatrick
and Klein, 2011). The fundamental problem is
similar to our own: we are presented with a se-
quence of symbols, and we need to learn a corre-
spondence between symbols and letters. Our ap-
proach is also similar in that we use a strong lan-
guage model (in conjunction with the constraint
that the correspondence be regular) to learn the
correct mapping. However, the symbols are not
noisy in decipherment problems and in our prob-
lem we face a grid of pixels for which the segmen-
tation into symbols is unknown. In contrast, deci-
pherment typically deals only with discrete sym-
bols.

3 Model
Most historical documents have unknown fonts,
noisy typesetting layouts, and inconsistent ink lev-
els, usually simultaneously. For example, the por-
tion of the document shown in Figure 2 has all
three of these problems. Our model must handle
them jointly.

We take a generative modeling approach in-
spired by the overall structure of the historical
printing process. Our model generates images of
documents line by line; we present the generative
process for the image of a single line. Our pri-
mary random variables are E (the text) and X (the
pixels in an image of the line). Additionally, we
have a random variable T that specifies the layout
of the bounding boxes of the glyphs in the image,
and a random variable R that specifies aspects of
the inking and rendering process. The joint distri-
bution is:

P (E, T, R, X) =

P (E) [Language model]
· P (T |E) [Typesetting model]
· P (R) [Inking model]
· P (X|E, T, R) [Noise model]

We let capital letters denote vectors of concate-
nated random variables, and we denote the indi-
vidual random variables with lower-case letters.
For example, E represents the entire sequence of
text, while ei represents ith character in the se-
quence.

3.1 Language Model P (E)

Our language model, P (E), is a Kneser-Ney
smoothed character n-gram model (Kneser and
Ney, 1995). We generate printed lines of text
(rather than sentences) independently, without
generating an explicit stop character. This means
that, formally, the model must separately generate
the character length of each line. We choose not to
bias the model towards longer or shorter character
sequences and let the line length m be drawn uni-
formly at random from the positive integers less
than some large constant M.1 When i < 1, let ei
denote a line-initial null character. We can now
write:

P (E) = P (m) ·
mY

i=1

P (ei|ei�1, . . . , ei�n)

1In particular, we do not use the kind of “word bonus”
common to statistical machine translation models.

T

p r i s o n

[Berg-Kirkpatrick et al. 2013]Slide courtesy of Taylor Berg-Kirkpatrick 
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2 Related Work

Relatively little prior work has built models specif-
ically for transcribing historical documents. Some
of the challenges involved have been addressed
(Ho and Nagy, 2000; Huang et al., 2006; Kae and
Learned-Miller, 2009), but not in a way targeted
to documents from the printing press era. For ex-
ample, some approaches have learned fonts in an
unsupervised fashion but require pre-segmentation
of the image into character or word regions (Ho
and Nagy, 2000; Huang et al., 2006), which is not
feasible for noisy historical documents. Kae and
Learned-Miller (2009) jointly learn the font and
image segmentation but do not outperform mod-
ern baselines.

Work that has directly addressed historical doc-
uments has done so using a pipelined approach,
and without fully integrating a strong language
model (Vamvakas et al., 2008; Kluzner et al.,
2009; Kae et al., 2010; Kluzner et al., 2011).
The most comparable work is that of Kopec and
Lomelin (1996) and Kopec et al. (2001). They
integrated typesetting models with language mod-
els, but did not model noise. In the NLP com-
munity, generative models have been developed
specifically for correcting outputs of OCR systems
(Kolak et al., 2003), but these do not deal directly
with images.

A closely related area of work is automatic de-
cipherment (Ravi and Knight, 2008; Snyder et al.,
2010; Ravi and Knight, 2011; Berg-Kirkpatrick
and Klein, 2011). The fundamental problem is
similar to our own: we are presented with a se-
quence of symbols, and we need to learn a corre-
spondence between symbols and letters. Our ap-
proach is also similar in that we use a strong lan-
guage model (in conjunction with the constraint
that the correspondence be regular) to learn the
correct mapping. However, the symbols are not
noisy in decipherment problems and in our prob-
lem we face a grid of pixels for which the segmen-
tation into symbols is unknown. In contrast, deci-
pherment typically deals only with discrete sym-
bols.

3 Model
Most historical documents have unknown fonts,
noisy typesetting layouts, and inconsistent ink lev-
els, usually simultaneously. For example, the por-
tion of the document shown in Figure 2 has all
three of these problems. Our model must handle
them jointly.

We take a generative modeling approach in-
spired by the overall structure of the historical
printing process. Our model generates images of
documents line by line; we present the generative
process for the image of a single line. Our pri-
mary random variables are E (the text) and X (the
pixels in an image of the line). Additionally, we
have a random variable T that specifies the layout
of the bounding boxes of the glyphs in the image,
and a random variable R that specifies aspects of
the inking and rendering process. The joint distri-
bution is:

P (E, T, R, X) =

P (E) [Language model]
· P (T |E) [Typesetting model]
· P (R) [Inking model]
· P (X|E, T, R) [Noise model]

We let capital letters denote vectors of concate-
nated random variables, and we denote the indi-
vidual random variables with lower-case letters.
For example, E represents the entire sequence of
text, while ei represents ith character in the se-
quence.

3.1 Language Model P (E)

Our language model, P (E), is a Kneser-Ney
smoothed character n-gram model (Kneser and
Ney, 1995). We generate printed lines of text
(rather than sentences) independently, without
generating an explicit stop character. This means
that, formally, the model must separately generate
the character length of each line. We choose not to
bias the model towards longer or shorter character
sequences and let the line length m be drawn uni-
formly at random from the positive integers less
than some large constant M.1 When i < 1, let ei
denote a line-initial null character. We can now
write:

P (E) = P (m) ·
mY

i=1

P (ei|ei�1, . . . , ei�n)

1In particular, we do not use the kind of “word bonus”
common to statistical machine translation models.

E

Typesetting Model

Over-inked

It appeared that the Prisoner was veryE :

X :

Wandering baseline Historical font

Figure 2: An example image from a historical document (X)
and its transcription (E).

2 Related Work

Relatively little prior work has built models specif-
ically for transcribing historical documents. Some
of the challenges involved have been addressed
(Ho and Nagy, 2000; Huang et al., 2006; Kae and
Learned-Miller, 2009), but not in a way targeted
to documents from the printing press era. For ex-
ample, some approaches have learned fonts in an
unsupervised fashion but require pre-segmentation
of the image into character or word regions (Ho
and Nagy, 2000; Huang et al., 2006), which is not
feasible for noisy historical documents. Kae and
Learned-Miller (2009) jointly learn the font and
image segmentation but do not outperform mod-
ern baselines.

Work that has directly addressed historical doc-
uments has done so using a pipelined approach,
and without fully integrating a strong language
model (Vamvakas et al., 2008; Kluzner et al.,
2009; Kae et al., 2010; Kluzner et al., 2011).
The most comparable work is that of Kopec and
Lomelin (1996) and Kopec et al. (2001). They
integrated typesetting models with language mod-
els, but did not model noise. In the NLP com-
munity, generative models have been developed
specifically for correcting outputs of OCR systems
(Kolak et al., 2003), but these do not deal directly
with images.

A closely related area of work is automatic de-
cipherment (Ravi and Knight, 2008; Snyder et al.,
2010; Ravi and Knight, 2011; Berg-Kirkpatrick
and Klein, 2011). The fundamental problem is
similar to our own: we are presented with a se-
quence of symbols, and we need to learn a corre-
spondence between symbols and letters. Our ap-
proach is also similar in that we use a strong lan-
guage model (in conjunction with the constraint
that the correspondence be regular) to learn the
correct mapping. However, the symbols are not
noisy in decipherment problems and in our prob-
lem we face a grid of pixels for which the segmen-
tation into symbols is unknown. In contrast, deci-
pherment typically deals only with discrete sym-
bols.

3 Model
Most historical documents have unknown fonts,
noisy typesetting layouts, and inconsistent ink lev-
els, usually simultaneously. For example, the por-
tion of the document shown in Figure 2 has all
three of these problems. Our model must handle
them jointly.

We take a generative modeling approach in-
spired by the overall structure of the historical
printing process. Our model generates images of
documents line by line; we present the generative
process for the image of a single line. Our pri-
mary random variables are E (the text) and X (the
pixels in an image of the line). Additionally, we
have a random variable T that specifies the layout
of the bounding boxes of the glyphs in the image,
and a random variable R that specifies aspects of
the inking and rendering process. The joint distri-
bution is:

P (E, T, R, X) =

P (E) [Language model]
· P (T |E) [Typesetting model]
· P (R) [Inking model]
· P (X|E, T, R) [Noise model]

We let capital letters denote vectors of concate-
nated random variables, and we denote the indi-
vidual random variables with lower-case letters.
For example, E represents the entire sequence of
text, while ei represents ith character in the se-
quence.

3.1 Language Model P (E)

Our language model, P (E), is a Kneser-Ney
smoothed character n-gram model (Kneser and
Ney, 1995). We generate printed lines of text
(rather than sentences) independently, without
generating an explicit stop character. This means
that, formally, the model must separately generate
the character length of each line. We choose not to
bias the model towards longer or shorter character
sequences and let the line length m be drawn uni-
formly at random from the positive integers less
than some large constant M.1 When i < 1, let ei
denote a line-initial null character. We can now
write:

P (E) = P (m) ·
mY

i=1

P (ei|ei�1, . . . , ei�n)

1In particular, we do not use the kind of “word bonus”
common to statistical machine translation models.

T

XRendering Model

P (X|E, T )

p r i s o n

[Berg-Kirkpatrick et al. 2013]Slide courtesy of Taylor Berg-Kirkpatrick 
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Language Model

Over-inked

It appeared that the Prisoner was veryE :

X :

Wandering baseline Historical font

Figure 2: An example image from a historical document (X)
and its transcription (E).

2 Related Work

Relatively little prior work has built models specif-
ically for transcribing historical documents. Some
of the challenges involved have been addressed
(Ho and Nagy, 2000; Huang et al., 2006; Kae and
Learned-Miller, 2009), but not in a way targeted
to documents from the printing press era. For ex-
ample, some approaches have learned fonts in an
unsupervised fashion but require pre-segmentation
of the image into character or word regions (Ho
and Nagy, 2000; Huang et al., 2006), which is not
feasible for noisy historical documents. Kae and
Learned-Miller (2009) jointly learn the font and
image segmentation but do not outperform mod-
ern baselines.

Work that has directly addressed historical doc-
uments has done so using a pipelined approach,
and without fully integrating a strong language
model (Vamvakas et al., 2008; Kluzner et al.,
2009; Kae et al., 2010; Kluzner et al., 2011).
The most comparable work is that of Kopec and
Lomelin (1996) and Kopec et al. (2001). They
integrated typesetting models with language mod-
els, but did not model noise. In the NLP com-
munity, generative models have been developed
specifically for correcting outputs of OCR systems
(Kolak et al., 2003), but these do not deal directly
with images.

A closely related area of work is automatic de-
cipherment (Ravi and Knight, 2008; Snyder et al.,
2010; Ravi and Knight, 2011; Berg-Kirkpatrick
and Klein, 2011). The fundamental problem is
similar to our own: we are presented with a se-
quence of symbols, and we need to learn a corre-
spondence between symbols and letters. Our ap-
proach is also similar in that we use a strong lan-
guage model (in conjunction with the constraint
that the correspondence be regular) to learn the
correct mapping. However, the symbols are not
noisy in decipherment problems and in our prob-
lem we face a grid of pixels for which the segmen-
tation into symbols is unknown. In contrast, deci-
pherment typically deals only with discrete sym-
bols.

3 Model
Most historical documents have unknown fonts,
noisy typesetting layouts, and inconsistent ink lev-
els, usually simultaneously. For example, the por-
tion of the document shown in Figure 2 has all
three of these problems. Our model must handle
them jointly.

We take a generative modeling approach in-
spired by the overall structure of the historical
printing process. Our model generates images of
documents line by line; we present the generative
process for the image of a single line. Our pri-
mary random variables are E (the text) and X (the
pixels in an image of the line). Additionally, we
have a random variable T that specifies the layout
of the bounding boxes of the glyphs in the image,
and a random variable R that specifies aspects of
the inking and rendering process. The joint distri-
bution is:

P (E, T, R, X) =

P (E) [Language model]
· P (T |E) [Typesetting model]
· P (R) [Inking model]
· P (X|E, T, R) [Noise model]

We let capital letters denote vectors of concate-
nated random variables, and we denote the indi-
vidual random variables with lower-case letters.
For example, E represents the entire sequence of
text, while ei represents ith character in the se-
quence.

3.1 Language Model P (E)

Our language model, P (E), is a Kneser-Ney
smoothed character n-gram model (Kneser and
Ney, 1995). We generate printed lines of text
(rather than sentences) independently, without
generating an explicit stop character. This means
that, formally, the model must separately generate
the character length of each line. We choose not to
bias the model towards longer or shorter character
sequences and let the line length m be drawn uni-
formly at random from the positive integers less
than some large constant M.1 When i < 1, let ei
denote a line-initial null character. We can now
write:

P (E) = P (m) ·
mY

i=1

P (ei|ei�1, . . . , ei�n)

1In particular, we do not use the kind of “word bonus”
common to statistical machine translation models.

E

Typesetting Model
· P (T |E)

T

XRendering Model

P (X|E, T )

p r i s o n

Our Focus

[Berg-Kirkpatrick et al. 2013]Slide courtesy of Taylor Berg-Kirkpatrick 
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Our Focus

1.  Multilingual code-switching 

2.  Orthographic variation



Multilingual Texts
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Many historical documents are written in, and 
switch readily between, multiple languages.

Multilingual Texts





Spanish

Latin

Nahuatl



Spanish

Latin

Nahuatl



Spanish

Latin

Nahuatl



Spanish

Latin

Nahuatl
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Why Code Switching?

…and adding these words.  [Nahuatl phrase],
with which all ambiguity and doubt is removed…
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Ocular’s Language Model

a
ei

r t
ei�1 ei+1

Kneser-Ney smoothed character 6-gram

E

[Berg-Kirkpatrick et al. 2013]Slide courtesy of Taylor Berg-Kirkpatrick 
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file6.txt

Neither Lorillard 
nor the researchers 
who studied the 
workers were aware 
of any research on 
smokers of the Kent 
cigarettes . We have 
no useful 
information on 
whether users are at 
risk , said James A. 
Talcott of Boston 's 
Dana-Farber Cancer 
Institute .

file5.txt

We 're talking about 
years ago before 
anyone heard of 
asbestos having any 
questionable 
properties . There 
is no asbestos in 
our products now .

file4.txt

Although preliminary 
findings were 
reported more than a 
year ago , the 
latest results 
appear in today 's 
New England Journal 
of Medicine , a 
forum likely to 
bring new attention 
to the problem . A 
Lorillard spokewoman 
said , This is an 
old story .

Ocular’s Language Model

a
ei

r t
ei�1 ei+1

E

[Berg-Kirkpatrick et al. 2013]

file3.txt

The asbestos fiber , 
crocidolite , is 
unusually resilient 
once it enters the 
lungs , with even 
brief exposures to 
it causing symptoms 
that show up decades 
later , researchers 
said . Lorillard 
Inc. , the unit of 
New York-based Loews 
Corp. that makes 
Kent cigarettes , 
stopped using 

file2.txt

Rudolph Agnew , 55 
years old and former 
chairman of 
Consolidated Gold 
Fields PLC , was 
named a nonexecutive 
director of this 
British industrial 
conglomerate . A 
form of asbestos 
once used to make 
Kent cigarette 
filters has caused a 
high percentage of 
cancer deaths among 

file1.txt

Pierre Vinken , 61 
years old , will 
join the board as a 
nonexecutive 
director Nov. 29 . 
Mr. Vinken is 
chairman of Elsevier 
N.V. , the Dutch 
publishing group .

count n-grams
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Ocular’s Language Model

Ocular was originally evaluated on court documents 
printed in England in the 1700-1800s.
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Ocular’s Language Model
English

                 
An orchic unred Sacrameters were else 
momaquiliteo are were climrocaruisili- 
teorage Intergentilamandis, tie board isn’t 
quate quilted it in Raptisme's snig Vada-  
m and swig broad in Confirmacion's inter 
girlamandis wife broad. Trinidagon arcators 
internault dramandi, is board in petrol me- 
ss oasis di-             
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spanish6.txt
spanish5.txt
spanish4.txt
spanish3.txt
spanish2.txt
spanish1.txt

latin6.txt
latin5.txt
latin4.txt
latin3.txt
latin2.txt
latin1.txt

nahuatl6.txt
nahuatl5.txt
nahuatl4.txt
nahuatl3.txt
nahuatl2.txt
nahuatl1.txt

Baseline Multilingual Model

eiei�1 ei+1

E
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spanish6.txt
spanish5.txt
spanish4.txt
spanish3.txt
spanish2.txt
spanish1.txt

latin6.txt
latin5.txt
latin4.txt
latin3.txt
latin2.txt
latin1.txt

nahuatl6.txt
nahuatl5.txt
nahuatl4.txt
nahuatl3.txt
nahuatl2.txt
nahuatl1.txt

Baseline Multilingual Model

eiei�1 ei+1

E

count n-grams
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Baseline Multilingual Model
Multilingual Blur

A nõ chicunt et l. Sacramẽtos, ó trecho 
momaquili texoac, otechmocavilili - 
texoac. Inic centlamantli, iehoatl in ne - 
quatequiliztli in Baptismo . inic vntla- 
mantli, iehoatl in Confirmación . imic 
etlamantli, iehoatl, in itlaçònacaiotzi, 
inic nauhtlamantli, iehoatl in netolme- 
laoaliztli.
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spanish6.txt
spanish5.txt
spanish4.txt
spanish3.txt
spanish2.txt
spanish1.txt

latin6.txt
latin5.txt
latin4.txt
latin3.txt
latin2.txt
latin1.txt

nahuatl6.txt
nahuatl5.txt
nahuatl4.txt
nahuatl3.txt
nahuatl2.txt
nahuatl1.txt

E

ei-1,l ei,l ei+1,l

ei-1,s ei,s ei+1,s

ei-1,n ei,n ei+1,n

Code-Switching Language Model





AÁBCDÉFGHIÍJKLMÑOÓPQRSTUÚVWXYZ
aábcdéfghiíjklmñoópqrstuúvwxyz
01234567890.,/\()?!”’:;-

ABCDFGHIJKLMOPQRSTUVWXYZ
abcdfghijklmopqrstuvwxyz
01234567890.,/\()?!”’:;-

ABCDFGHIJKLMOPQRSTUVWXYZ
abcdfghijklmopqrstuvwxyz
01234567890.,/\()?!”’:;-

Spanish

Latin

Nahuatl
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                  is learned 
unsupervised via EM,

E

eiei�1 ei+1

P(   |       )

Code-Switching Language Model

with a hyperparameter 
biasing the model 
toward not switching 
(long language spans)
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Code-Switching

Ano chicuntetl Sacramẽtos, otech  
momaquili teoac, otechmocavililì -  
teoac. Inic centlamantli . iehoatl in nè-  
quatequiliztli, in Baptismo . inic vntla-  
mantli, iehoatl in Confirmación : inic  
etlamantli, iehoatl, in itlaçonacaiotzi;  
inic nauhtlamantli, iehoatl in neiolme-  
laoaliztli.  
    

Code-Switching Language Model



Orthographic 
Variability
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dize dice
Original form Modern form

Orthographic Variability

numero número
Dõde Donde
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Orthographic Variability

Spelling, accent usage, shorthand, etc vary by: 
• region 
• time period 
• author 
• printer 
• document 
• page 
• etc

Orthography-specific supervision would be impossible. 
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Orthographic Variability

• Latinized orthographies of indigenous 
languages (such as Nahuatl) were being 
developed concurrently.
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Orthographic Variability

• We train our language models from available text 
(e.g. Project Gutenberg) 

• Modern transcribers use modern spellings, which 
often do not match the printed documents
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Orthographic Variability

• Scholarly editing tells us that it’s hard to 
determine what “correct” output looks like. 

• Literal transcription (aka Diplomatic) 
• Normalized transcription 

• Long history in determining how to prepare 
texts for publication. 

• Different scholars want different outputs   
(e.g. search engines or historical linguistics).
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Orthographic Variability

Two spellings of ‘mentira’ from one page of one book
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merita

metira˜

Without handling orth. variation:

Correct diplomatic transcription:

Correct normalized form: mentira

Orthographic Variability
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Induce a probabilistic mapping between 
normalized writing and the orthography of the 
document.

Unsupervised Orthography

Our approach:
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Our statistical model attempts to answer the question:

“How did these pixels end up on the page?”

Unsupervised Orthography
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Unsupervised Orthography
sp sp sp spsp spsp

p e r s o n aNahuatl
Latin

Spanish
 Language Model

?
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Unsupervised Orthography
sp sp sp spsp spsp

p e r s o n aNahuatl
Latin

Spanish
 Language Model

(decouple LM from image)
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Unsupervised Orthography
sp sp sp spsp spsp

p e ſr õ a

p e r s o n aNahuatl
Latin

Spanish
 Language Model

Nahuatl
Latin

Spanish
 Substitution Model
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Unsupervised Orthography
sp sp sp spsp spsp

p e ſr õ a

p e r s o n aNahuatl
Latin
Spanish

 Language Model

Nahuatl
Latin
Spanish

 Substitution Model
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Unsupervised Orthography
sp sp sp spsp spsp

p e r ſ õ a

p e r s o n a

Diplomatic:

Normalized:
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• We produce simultaneous diplomatic and 
normalized transcriptions. 

• Standard approach is a pipeline:                      
diplomatic transcription, then rule-based 
normalization. 

• Joint modeling works better.

Unsupervised Orthography
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• Latinized orthography was developed by people who 
referred to Nahuatl as “barbaric” and “deficient” in 
certain sounds.  

• Recently proposed orthographies seek to decolonize. 

• e.g. with tonal markings 

• and co-authoring with native speakers

For Nahuatl texts

Joint Dual Transcription



Learning the  
Model Parameters
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• How do we get the “statistics” for this 
statistical model?

Parameters

For the letter ‘a’, what’s the 
probability in this font of there 
being a black pixel here?
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Problem

Train an OCR system from only: 

1.  Images of pages 

2.  Modern monolingual text 

(no manually-transcribed pages, 
 no orthographically-variant example text)
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• We want the model to learn good parameters 
on its own (unsupervised). 

• We use the Expectation-Maximization algorithm

Parameter Learning
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Parameter Learning

Expectation-Maximization

• Initial:  
• Estimate language model n-gram counts. 
• Strong prior on “don’t substitute”, 

otherwise uniform. 
• Average all fonts installed on the computer. 

• Transcribe pages, update parameters, repeat.
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The EM Algorithm
0.  Initialize your expectations. 

“I think this is what an ‘a’ looks like.”

Repeat

1.  Transcribe data based on your expectations. 

“I think these are all the ‘a’s.”

2.  Update your expectations. 

“Oh, I guess that’s what an ‘a’ looks like.”
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The EM Algorithm

acoſtubrar el anima a˜

cb
a



Experiments
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Experiments

• Evaluated on seven different Primeros Libros books 

• Years 1553 to 1600 

• Differing fonts, language proportions, clarity, etc
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Orthography Baseline

spanish6.txt
spanish5.txt
spanish4.txt
spanish3.txt
spanish2.txt
spanish1.txt

spanish6b.txt
spanish5b.txt
spanish4b.txt
spanish3b.txt
spanish2b.txt
spanish1b.txt

Modern Spanish “Old” SpanishReplacement 
Rules
u → v 
c → z 
ú → u 
on → õ 

que → q  ~
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Experiments
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Example Outputs

Original image
No orth. handling

Our diplomatic
Our normalized
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Example Outputs

Original image

Our diplomatic

Our normalized

70

de las dos que se siguen en las quales apro-
vecha mucho acostumbrar el ánima á se le-

de las dos que se siguen en las quales apro

uecha mucho acost˜ubrar el anima

´

a se le-
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Example Outputs

Original image

No orth. handling

Our diplomatic
Our normalized

Typographical Error
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Example Outputs

Original image 

Baseline 

Our diplomatic 

Our normalized 

Gold diplomatic 

Gold Normalized
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síModel output:

Gold transcription: li

tĩi

tli

Model avoids switching languages, but this is 
actually from a description of Nahuatl grammar.

← Spanish

← Nahuatl

Example Outputs
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 tetechtla miec caquixtiliztli

Example Outputs

Spacing in Nahuatl writing was not standardized.



Broader Implications
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• Normalization provides access for: 

• Students and non-native speakers for whom 
historical orthography is hard to read. 

• Screen-readers for the visually impaired.

Joint Dual Transcription
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Particularly relevant for transcribing texts in indigenous 
languages. 

• More dramatic changes in orthography. 
• 1570: Nahuatl becomes official language of 

New Spain. 
• Nahuatl spreads across Mesoamerica. 
• 1696: All indigenous languages are banned. 

• Reviving and standardizing written forms of these 
languages is an important effort today.

Joint Dual Transcription
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• Latinized orthography was developed by people who 
referred to Nahuatl as “barbaric” and “deficient” in 
certain sounds.  

• Recently proposed orthographies seek to decolonize. 

• e.g. with tonal markings 

• and co-authoring with native speakers

For Nahuatl texts

Joint Dual Transcription
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• Our approach is able to target any “normal” 
orthography, by giving different LM training data. 

• Many scholars have their own preferences 
about Nahuatl orthographic standards. 

• We can map from the original, colonial, 
orthography to an actively decolonial form. 

• At the same time, preserving the historical/societal 
context in which the book was originally printed.

Joint Dual Transcription
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• Language-tagged output provides additional 
information that would be difficult or impossible 
to determine by hand. 

• Languages appearing in a book 

• Orthographic patterns

Output as Metadata
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Output as Metadata
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• Can patterns of orthography and code-switching 
tell us the author, printer, timeframe, region, etc? 

• Work has been done on this to identify the 
typesetters of Shakespeare texts. 

• Changes in orthography over time can give 
insight into historical linguistics.

Output as Metadata

Allows inquiry into further questions:
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• Linguists often need to aggregate small resources 
acquired from various sources. 

• Many texts produced by naïve authors who don’t 
conform to any orthographic standards. 

• Good opportunity for low-resource text 
normalization (with or without OCR component)

Documentary Linguistics



Conclusion
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Conclusion
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Conclusion

como parece manifiesto en las palabras de S.  
joan, que dice. Tres sunt qui testimonium dã:  
in cælo Pater, Verbum, & Spiritus sanctus;  
g. hi tres unum sunt. 1. Joann. ultimo por  
lo cual deben ser instruidos y enseñados, que  
todas tres divinas personas son un Dios ver-  
dadero; y reformando la sobre dicha propos;  
sicion, y añadiendo ella palabra. in huel ini:  
ixtintzitzin, con que sé quita toda amphilo-  
logía y duda diciendo. In Dios. ca Tettatzin  
Tepiltzin, Spiritu sancto, et personas,) an (:  
huel nelli teutl Dios in huel imeyxtintzitzin.  
q. d. Dios es Padre, Hijo, y Spũ sancto tres  
personas, un solo Dios verdadero todas tres,  
cõ la cual redúplicación se quita toda dubda.  
También se quizá con estas proposiciones.  
In D;s O S.ta Tettatzin, Tepiltzin, Spiritus ad  
cro, can huel icaltzin teutl Dios tlahtohuani.  
in Dios. ca Tettatzin, Tepiltzin, Spiritu san-  
cto, in ieixtin. personas can huel icaltzin Dios  
tlahtohuani. Ca in imeyxtin personasme ca-  
can huel icaltzin teutl Dios tlahtohuani in-  
huel ineixtin. ¶ Otros respondena y es é-  
segundo error y ca ce Dios tlahtohuani, in iuh  
ticteittiti cá, y á algunos de sus ministros les su  
parescido et merei tutorica, in vocablo envid-  
                                          ui in

como parece manifieſto en las palabras de S.  
joan, que dize. Tres ſunt qui teſtimoniũ dã:  
in cælo Pater, Verbum, & Spiritus ſanctus;  
g. hi tres vnum ſunt. 1. Joann. vltimo por  
lo qual deuen ſer inſtruydos y enſeñados, que  
todas tres diuinas perſonas ſon vn Dios ver-  
dadero; o reformando la ſobre dicha propoſ;  
ſicion, y añadiendo ella palabra. in huel ini:  
ixtintzitzin, con que ſé quita toda amphibo-  
logia y duda diziendo. In Dios. ca Tettatzin  
Tepiltzin, Spiritu ſancto, et perſonas,) an (:  
huel nelli teutl Dios in huel imeixtintzitzin.  
q. d. Dios es Padre, Hijo, y Spũ ſancto tres  
perſonas, vn ſolo Dios verdadero todas tres,  
cõ la qual reduplicacion ſe quita toda dubda.  
También ſe quitá con eſtas propossiciones.  
In D;ſ O S.ca Tettatzin, Tepiltzin, Spirituſ aa  
cfo, can huel iceltzin teutl Dios tlahtohuani.  
in Dios. ca Tettatzin, Tepiltzin, Spiritu ſan-  
cto, in ieixtin. perſonas can huel iceltzin Dios  
tlahtohuani. Ca in imeixtin perſonasme ca-  
can huel iceltzin teutl Dios tlahtohuani in-  
huel imeixtin. ¶ Otros reſpondenj y es é  
ſegundo error j ca ce Dios tlahtohuani, im iut  
tĩtfittoti cá, y á algũnos de ſus miniſtros les ſu  
pareſcido et merei tutorica, vn vocablo enjid  
                                          ui in
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