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Abstract

Code-switching, the use of more than one lan-
guage within a single utterance, is ubiquitous
in much of the world, but remains a chal-
lenge for NLP largely due to the lack of rep-
resentative data for training models. In this
paper, we present a novel model architecture
that is trained exclusively on monolingual re-
sources, but can be applied to unseen code-
switched text at inference time. The model
accomplishes this by jointly maintaining sep-
arate word representations for each of the
possible languages—or scripts in the case of
transliteration—allowing each to contribute to
inferences without forcing the model to com-
mit to a language. Experiments on Hindi-
English part-of-speech tagging demonstrate
that our approach outperforms standard mod-
els when training on monolingual text without
transliteration, and testing on code-switched
text with alternate scripts.

1 Introduction

Code-switching,1 the linguistic phenomenon of
switching between more than one language within
a single utterance, is ubiquitous in multilin-
gual societies worldwide, but presents particu-
lar challenges for even the most standard NLP

tasks. For example, state-of-the-art neural part-of-
speech (POS) taggers are trained on POS-annotated
data to learn the relationships between words
and tags, and rely on word embeddings trained
from large (usually unannotated) corpora to cap-
ture information about each word’s typical con-
texts (Ling et al., 2015; Wang et al., 2015). But
while monolingual corpora, both annotated and
unannotated, are relatively easy to acquire, code-
switched text is much more difficult to collect in
large quantities. Annotated code-switched texts

1The terms code-mixing and -switching are used for simi-
lar phenomena; for simplicity, we use only code-switching.

in particular are not only expensive to create, re-
quiring particularly skilled bilingual linguists as
annotators, but they will never exist for the com-
plete set of pairs (or triples, etc.) of languages
between which an individual may switch. Fur-
ther complicating the problem is that texts featur-
ing code-switching also tend to feature transliter-
ation—writing in a non-standard script—to avoid
having to switch keyboard settings mid-sentence.
When Hindi is transliterated from Devanagari to
Latin script, tokens are no longer easy to distin-
guish by language.2 Previous work addresses this
problem by first attempting to identify the correct
language and form of a word before feeding it into
an appropriate monolingual tagger (Vyas et al.,
2014; Solorio and Liu, 2008; Sharma et al., 2016).
As is typically the case in NLP, such pipelines suf-
fer from the problem of cascading errors; e.g., fail-
ures of the language identification will cause prob-
lems in the tag prediction (Barman et al., 2016).
Other approaches have trained supervised mod-
els on POS-annotated, code-switched data (Jamatia
et al., 2015; Ghosh et al., 2016; Gupta et al., 2017;
Barman et al., 2016; Sequiera et al., 2015, inter
alia), resources which are expensive to create and
unavailable for most language pairs.

In this work, we present a novel POS-tagging
model architecture that can be trained exclusively
on available monolingual standard-orthography
resources, but that can be applied to texts that
contain code-switching and transliteration. Be-
cause our model learns from monolingual training
data, we are able to learn a code-switched POS-
tagger for any combination of languages with POS-
annotated data, regardless of whether any existing

2We will use the term transliterated to imply conversion
from a standard script to a non-standard script, e.g., Devana-
gari to Latin for Hindi, and detransliterated to imply the re-
verse, and, for simplicity, when we say written in Devanagari
or Latin, we mean Devanagari or Latin script.



(annotated or unannotated) code-switched corpus
exists. By allowing multiple word embeddings
(one for each of the possible languages) to jointly
represent each token, we avoid explicit language
identification and the resulting error propagation.

2 Task Setup

Training data We train our POS tagger using
the Universal Dependencies (UD) treebanks for
Hindi and English, which are annotated for part-
of-speech (Nivre et al., 2016).3 The English tree-
bank contains roughly 22K sentences; the Hindi
contains roughly 16K sentences. Sentences in
both languages are taken from news text and sim-
ilarly formal sources, and the Hindi is written en-
tirely in Devanagari.

Test data We evaluated our POS tagging mod-
els on the code-switched Twitter data released by
Bhat et al. (2018), which is annotated using the
UD POS tag set.4 All tweets are written entirely
in Latin script and have at least one token of both
Hindi and English, with 45% of the total tokens
being Hindi, 38% English, 17% labeled as univer-
sal, mixed, named entity, or acronym.

Word embeddings For monolingual word em-
beddings, we use indic-word2vec,5 for which the
English embeddings are trained from 280M sen-
tences and Hindi from 40M. The word vectors are
learned using a skip-gram model with negative
sampling, implemented in the word2vec toolkit
(Mikolov et al., 2013). We use the 50,000 most
frequent words in each vocabulary.

Transliteration To convert words between
scripts, we make use of the Indictrans open-
source transliterator,6 which is able to convert,
bidirectionally, between Latin and the scripts
of Indic languages (Bhat et al., 2015). Be-
cause Hindi does not have a formal system for
transliteration, those writing Hindi in Latin—or
English in Devanagari—tend to write phonetically
according to their own conventions. Thus, we
make use of the ability of Indictrans to generate
multiple transliteration alternatives, simulating
the variation in Hindi transliterated writing.

3universaldependencies.org/
4github.com/CodeMixed

UniversalDependencies/UD_Hindi_English
5bitbucket.org/irshadbhat/

indic-word2vec-embeddings
6github.com/libindic/indic-trans

3 Model

The central challenge of our task is to be able to
train on data that differs drastically from the text
seen at inference time. Because of the inherent
limitations on what kinds of data are available—
annotations and word embeddings are generally
only available on monolingual data written in stan-
dard scripts—we are interested in designing a
model that can be trained on monolingual sen-
tences in which English is written in Latin script
and Hindi in Devanagari, but is able to predict POS

tags on code-mixed text in which both English and
Hindi are written in Latin script.

We accomplish this by representing input words
not as a single vector (or as a word embedding af-
fixed to sub-word representations), but as a joint
representation that maintains embeddings for each
language such that they can be learned and up-
dated during training from the monolingual data,
and mixed appropriately at inference time without
having to commit to one or the other language. As
seen in Figure 1, our model represents an input as
the concatenation of four parts: a Hindi word em-
bedding, an English word embedding, the output
of a bi-LSTM over Hindi character embeddings,
and a bi-LSTM over English characters.

Since our model is trained on monolingual
Hindi and English sentences, when a token is en-
countered during training, we know what language
it is in. If we encounter an English sentence, then
for each token, we look up its word embedding in
the appropriate monolingual vector space to use in
the English side of the full representation, and we
use the word’s characters as input to the English
character LSTM. For Hindi sentences, the proce-
dure is similar but for the other side of the full rep-
resentation. In either case, when we are training
on a word in one language, we use zero vectors as
the inputs for the other language’s side of the full
input representation.

At inference time, we will encounter only Latin
script words, but we will not know the lan-
guage of any token. Therefore, we use our joint-
representation model to represent the token as
both languages simultaneously. The Latin word is
looked up in the English word embeddings to use
as input to the English side, and the Latin charac-
ters are used for the English character LSTM. For
the Hindi side we detransliterate the input word to
Devanagari and perform the same actions.

The design of our model has a few important

universaldependencies.org/
github.com/CodeMixed
UniversalDependencies/UD_Hindi_English
bitbucket.org/irshadbhat/indic-word2vec-embeddings
bitbucket.org/irshadbhat/indic-word2vec-embeddings
github.com/libindic/indic-trans
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Figure 2:  Our model.  All inputs are treated simultaneously as both languages.  At training time, for 
a (monolingual) Hindi input, only the contents of the orange/dotted boxes apply and the English half 
of the vector is all zeros; for English, only the green/dashed boxes apply.  At inference time, the full 
figure applies.
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Figure 1: Our model. All inputs are treated simultaneously as both languages. At training time, for a
(monolingual) Hindi input, only the contents of the orange/dotted boxes apply, and the English half of
the vector is all zeros; for (monolingual) English, only the green/dashed boxes apply. At inference time,
where the language of each token is unknown, the full figure applies.

advantages. First, because of Hindi’s lack of a for-
malized transliteration system, Latin-script Hindi
tends to have a very high amount of spelling vari-
ation. In our model (as opposed to the base-
line model described below), the script conver-
sion always goes from Latin to Devanagari, which
naturally allows us to take unpredictable vari-
ant spellings and collapse them into standardized
spellings, making it more likely for us to find the
word in the embeddings listing. Second, there are
some types of words for which it does not make
sense to say that they are in one language or an-
other. For example, a person’s name might be
equally valid as Devanagari Hindi or Latin En-
glish. In these cases, our model would allow both
to influence a prediction as well as the rest of the
bi-LSTM chain.

Finally, our model allows for the incorpo-
ration of external language prediction infor-
mation, including soft predictions. To test
this, we ran experiments in which we used a
fully-unsupervised token-level language identifi-
cation approach based on Rijhwani et al. (2017)
to estimate a probability distribution over lan-
guage labels for each token in the test data.
Our approach was to run Forward-Backward on
an HMM that was initialized to prefer same-
language transitions and whose emissions were
initialized using Laplace-smoothed maximum-
likelihood-estimated character n-gram probabil-
ities from each language’s monolingual corpus
(Dempster et al., 1977; Kupiec, 1992). We used
the induced language probabilities to weight each
side of the input representation at inference time:
if the unsupervised model’s output said that a par-

ticular test token’s probability of being Hindi was
70%, then we would multiply the Hindi side of
the input vector by 0.7 and the English side by
0.3, thus instructing the model to let the Hindi
word embedding (and character-LSTM output) ex-
ert more influence during POS prediction.

4 Experiments

In our evaluation, we used the framework of a
basic bi-LSTM tagger to compare our model for
generating representations of tokens that maintain
language ambiguity against a standard model that
uses a single word embedding. In this section, we
explain the experimental setup, baseline approach,
and our experimental variants.7

4.1 POS tagger framework

For all of our experiments, we follow the ba-
sic structure of the bi-LSTM architecture of
Bhat et al. (2018): word and sub-word embed-
dings are concatenated to form the input represen-
tations of each token, and connected together by
a bi-LSTM that outputs POS predictions via mul-
tilayer perceptron and softmax layers (Hochreiter
and Schmidhuber, 1997; Graves and Schmidhu-
ber, 2005; Ling et al., 2015; Wang et al., 2015).
Sub-word embeddings are the outputs of a bi-
LSTM over characters (20-dim); word embeddings
are initialized with indic-word2vec (64-dim) em-
beddings. Both character and word embeddings
are updated during training. The bi-LSTM has 100

7Our code, implemented in DyNet (Neubig et al.,
2017), can be found at https://github.com/kelseyball/cs-
transliterated-pos-tagging.
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Figure 1:  Baseline model.  All inputs are treated as if they are one language.  The contents of the dotted 
boxes only apply at training time and only to (monolingual) Hindi inputs since annotated Devanagari 
Hindi data must be converted to Latin script; at inference time, inputs are always in Latin script.
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Figure 2: Baseline model. All inputs are treated as if they are one language. The contents of the dotted
boxes only apply at training time and only to (monolingual) Hindi inputs since annotated Devanagari
Hindi data must be converted to Latin script; at inference time, inputs are always in Latin script.

hidden states. We use an SGD trainer with learn-
ing rate=0.1 and dropout of 0.3 across 20 epochs.
We train the model it by pooling POS-annotated
English and Hindi UD sentences; the English is
entirely Latin script, and Hindi is entirely Devana-
gari. Our baseline and experimental models differ
in how a token is represented.

4.2 Baseline

Previous work on code-switched POS tag-
ging has achieved accuracies as high as
90.20% (Bhat et al., 2018), but because those
kinds of accuracies require supervised, in-domain
training data, they are not directly comparable
with the scenario that we are concerned with.
Therefore, we compare against a natural baseline
for our task: use a monolingual tagger and treat
everything as if it were a single language. To
deal with the problem of separately trained word
embeddings, we use the approach and imple-
mentation of Artetxe et al. (2018)8 to transform
both sets of monolingual embeddings so that
translationally equivalent words have similar
embeddings. We also ran the baseline without
this transformation, but found that using the
transformed embeddings resulted in a 0.5%
absolute improvement in accuracy over just using
the separately trained embeddings directly.

Training For an English sentence, each token
concatenates the English-lookup embedding to the
character LSTM output, and similarly for Hindi,
with the exception that the word is transliterated
before inputting to the character LSTM. Because
of the high spelling variation, we selected Latin
spellings by sampling uniformly from the top-5

8github.com/artetxem/vecmap

Model Acc.

Baseline (monolingual representation) 70.92

Ours (multi-language representation) 75.29
Ours w/ forced language choice 76.04
Ours w/ languages weighted by HMM 77.40

Ours w/ oracle language choice 80.53
Bhat et al. (2018) w/ supervision 90.20

Table 1: Results showing POS prediction accuracy.
The baseline model treats all inputs as effectively
monolingual (§4.2); the middle three lines are our
model: giving equal weight to each language’s
side of the token’s representation, using the unsu-
pervised HMM 1-best output to zero-out one lan-
guage’s side of the token’s representation, and us-
ing the unsupervised HMM probability estimates
to weight each side of the token’s representation.
The oracle line is our model using gold language
labels to zero-out one language’s side.

transliteration results. Always taking the 1-best re-
sulted in a 4.3% absolute loss.

Inference Each word is looked up in the English
embeddings and its detransliteration is looked up
in the in the Hindi embeddings. If the word is
found in only one, that vector is used, and if found
in neither, we use an unknown word vector. For a
fair comparison to our model, if both lookups re-
turn results, we use the 1-best prediction from the
unsupervised language identification HMM as dis-
cussed in §3 to decide which to use.

4.3 Unsupervised soft language prediction
One feature of our model is its ability to incor-
porate externally-derived, per-token soft language

github.com/artetxem/vecmap


predictions as weights at inference time without
having to make hard language decisions. To eval-
uate whether this improves accuracy, we used the
fully-unsupervised HMM language prediction (§3)
and tested our model using: no weighting, leav-
ing the embeddings untouched; using the HMM’s
1-best prediction to zero out the other language’s
inputs; and multiplying each language’s embed-
dings by its probability estimated by the HMM.

The results of our evaluation can be seen in
Table 1. While the best scenario for the base-
line tagger gives 70.92% accuracy, the most ba-
sic setup for our model yields 75.29%. Informing
our model with some fully-unsupervised HMM-
derived language information, but forcing a hard
language decision, is somewhat beneficial, yield-
ing 76.04%, though it trades off the benefits
of flexibility and generality in representation for
some extra information. And finally, using that
unsupervised information for soft weighting per-
forms even better, reaching 77.40%, a total ab-
solute improvement over the baseline of ∼6.5%,
clearly demonstrating the value of maintaining
ambiguity about a word’s language.

5 Conclusion

In this paper, we presented a novel POS-tagging
model for code-mixed, transliterated text that
avoids the need for expensive, supervised cor-
pora or language-identification pipelines. We
demonstrated that avoiding explicit language iden-
tification in code-switched contexts is beneficial.
Though we emphasize the paucity of annotated
code-switched corpora, previous work has demon-
strated that a small amount of supervision can go
a long way (Garrette and Baldridge, 2013); fu-
ture work might explore how much supervision is
needed to close the gap between our model and
Bhat et al. (2018).

While we address some of the most promi-
nent issues with code-switching, our model does
not deal with style, formality, or domain mis-
matches between the formal training data and in-
formal evaluation data. This problem is treated
in recent work on POS-tagging for social media
text (Owoputi et al., 2013; Gimpel et al., 2011),
but these issues have yet to be fully explored in
code-switched contexts. We leave these for future
work.
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