
NLP: Computational Semantics

Dan Garrette
dhg@cs.utexas.edu

December 27, 2013

1 First-Order Logic

• P ∧Q: P and Q are both true

• P ∨Q: Either P is true or Q is true or both are true

• P ⇒ Q: If P is true, then Q must also be true

• ¬P : P is false

• ∀x.P (x): For all x, P (x) is true

• ∃x.P (x): There exists an x such that P (x) is true

2 Lambda Calculus

• λx.f(x): An anonymous function that takes x as an argument and returns f(x)

• β-reduction: When the function λx.f(x) is applied some value y, we insert y for each occur-
rence of x. So, (λx.f(x))(y) becomes f(y).

• α-conversion: Since the x in λx.f(x) is just the name of a parameter, we can replace it with
any other parameter name. So λx.f(x) can be rewritten as λy.f(y).

3 Semantics

• Richard Montague

• Principle of Compositionality: the meaning of an expression is the the combination of the
meanings of its parts.

Proper nouns are “individuals”.

[[Mary]]: mary′

1



Intransitive verbs are functions over “individuals”, saying that the individual does that thing.
Individuals are always represented with a lower-case variable. Functions over individuals are called
“properties”; they indicate that the individual “has that property”.

[[sleeps]]: λx.sleeps′(x)

Example: “Mary sleeps”

[[Mary sleeps]]: [[sleeps]]([[Mary]]) = (λx.sleeps′(x))(mary′) = sleeps′(mary′)

So Mary has the property of sleeping.

Transitive verbs are functions over individuals that produce a new function over individuals. So a
transitive verb takes a first individual and produces a new function that looks something like an
intransitive verb.

[[sees]]: λx.λy.sees′(y, x)

Example: “Mary sees Bill”

[[Mary sees Bill]] : ([[sees]]([[Bill]]))([[Mary]])

((λx.λy.sees′(y, x))(bill′))([[Mary]])

(λy.sees′(y, bill′))(mary′)

sees′(mary′, bill′)

We can see that sees applies first to the direct object Bill to produce a property that looks like an
intransitive verb sees Bill. This new function applies to the subject Mary to indicate that Mary
has the property of seeing Bill.

4 Syntax-driven semantics (with CCG)

Up until this point, we have seen that each word in a sentence can have an associated meaning
representation, and that those meaning can be composed to get the meanings of larger phrases,
but we have not given any indication of how we know the order in which these pieces should be
composed. One natural way is to use syntax to drive this process since, after all, the syntax of a
sentence determines how we read its meaning.

In CCG, every token has an associated CCG category. We can extend this to use semantics by
attaching the meaning of the token to its category.

S :

NP : mary′

Mary

S\NP :

(S\NP)/NP : λx.λy.sees′(y, x)

sees

NP : bill′

Bill

Now we can use the category combinations to drive the semantics combinations.

The tree tells us that sees combines first with Bill, and that sees is the function and Bill is the
argument (since the category of sees is (S\NP)/NP, which takes an NP argument to its right, which

2



is exactly what Bill is). So just as the category of sees applies to the category of Bill to produce
a combined category (S \NP), the semantics of sees applies to the semantics of Bill to produce a
combined semantics:

S :

NP : mary′

Mary

S\NP : λy.sees′(y, bill′)

(S\NP)/NP : λx.λy.sees′(y, x)

sees

NP : bill′

Bill

This process continues for the combination of Mary and sees Bill.

S : sees′(mary′, bill′)

NP : mary′

Mary

S\NP : λy.sees′(y, bill′)

(S\NP)/NP : λx.λy.sees′(y, x)

sees

NP : bill′

Bill

5 Quantification

Nouns are functions over individuals that say that that individual has the property of being that
noun.

[[dog]]: λx.dog′(x)

Quantifiers are functions over two properties. Property variables are written with upper-case letters.

The semantics of a universal quantifier like every takes two properties and says that every
individual that has the first property must also have the second property:

[[every]]: λP.λQ.∀x.[P (x)⇒ Q(x)]

The semantics of an existential quantifier like a takes two properties and says that there is some
individual that has both the first property and the second property:

[[a]]: λP.λQ.∃x.[P (x) ∧Q(x)]

Example: “every dog barks”

[[every dog barks]] : ([[every]]([[dog]]))([[barks]])

(λP.λQ.∀x.[P (x)⇒ Q(x)])(λz.dog′(z))([[barks]])

(λQ.∀x.[(λz.dog′(z))(x)⇒ Q(x)])([[barks]])

(λQ.∀x.[dog′(x)⇒ Q(x)])([[barks]])

(λQ.∀x.[dog′(x)⇒ Q(x)])(λy.barks′(y))

∀x.[dog′(x)⇒ (λy.barks′(y))(x)]

∀x.[dog′(x)⇒ barks′(x)]

3



And with the syntax driving the derivation:

S : ∀x.[dog′(x)⇒ barks′(x)]

NP : λQ.∀x.[dog′(x)⇒ Q(x)]

NP/N : λP.λQ.∀x.[P (x)⇒ Q(x)]

every

N : λx.dog′(x)

dog

S\NP : λy.barks′(y)

barks

6 Semantic Ambiguity

Semantic ambiguity is possible even when the syntax is unambiguous. For example: “every student
took a test” has exactly one syntacic parse, but it has two semantic interpretations:

[[every]]([[student]], [[a]]([[test]], [[took]])): ∀s.[student′(s)⇒ ∃t.[test(t) ∧ took(s, t)]]

[[a]]([[test]], [[every]]([[student]], [[took]])): ∃t.[test(t) ∧ ∀s.[student′(s)⇒ took(s, t)]]

Semantic ambiguities are more complex to handle, but several frameworks exist to manage them.
Generally these use underspecified semantic representations that capture some of the semantic
structure while leaving some portions incomplete (though contrained to still be legal representa-
tions).

One underspecification framework is Hole Semantics developed by Johan Bos. The basic idea is
that you have “labels” on logical expression, “holes” in the expression, and constriants on which
holes can be filled by which labels:

l1 : ∀s.[student(s)⇒ h1]

l2 : ∃t.[test(s)⇒ h2]

l3 : λx.λy.took(x, y)

l1 ≤ h0

l2 ≤ h0

l3 ≤ h1

l3 ≤ h2

7 Neo-Davidsonian Semantics

In our current view of logical forms, we may see representations like this:

[[Mary helped]]: help′(mary′)

4



[[Mary helped Bill]]: help′(mary′, bill′)

[[Mary helped Bill with homework]]: help′(mary′, bill′, homework′)

[[Mary helped with homework]]: help′(mary′, homework′)

But this scheme is problematic because it is inflexible and doesn’t capture the generalities among
these statements. In this scheme the logical form of Mary helped Bill with homework does not
entail the logical form of Mary helped Bill.

Neo-Davidsonian semantics tries to fix this problem by separating out all of the verb’s arguments.
It does this by shifting the focus to a discussion about events and makes statements about those
events. So now the statement “Mary helped” is given a representation that states that there is
some event e that is a “helping” event and that Mary is doing the helping:

[[Mary helped]]: ∃e.[help′(e) ∧ agent(e,mary′)]

Therefore, all other arguments to the verb are simply additional conjuncts:

[[Mary helped Bill]]: ∃e.[help′(e) ∧ agent(e,mary′) ∧ patient(e, bill′)]

[[Mary helped Bill with homework]]: ∃e.[help′(e) ∧ agent(e,mary′) ∧ patient(e, bill′) ∧
theme(e, homework′)]

[[Mary helped with homework]]: ∃e.[help′(e) ∧ agent(e,mary′) ∧ theme(e, homework′)]

And, according to the rules of first order logic, the representation of Mary helped Bill with homework
entails the representation of Mary helped Bill :

∃e.[help′(e)∧agent(e,mary′)∧patient(e, bill′)∧theme(e, homework′)] � ∃e.[help′(e)∧agent(e,mary′)∧
patient(e, bill′)]

7.0.1 Neo-Davidsonian Semantics and Dependency Grammar

Using (labeled) dependency grammars makes generating Neo-Davidsonian representations straight-
forward:

helped

Mary Bill homework

agent

patient

theme

(a) Mary helped Bill with homework.

took

student

every

specifier

test

a

specifier

agent patient

(b) Every student took a test.

8 Discourse Representation Theory (DRT)

DRT is a similar to first-order logic, but it differs in a few key ways. First, expressions in DRT are
written in a graphical format known as a Discourse Representation Structure (DRS). Second, DRT

5



is a dynamic logic, meaning that the expressions can be updated as more information is available
(ie, as more text is read).

A DRS consists of two parts written inside a “box”. On top are the discourse referents, which are
basically existentially quantified variables. Below are the discourse conditions, which are logical
statements.

Examples:

[[fido barks]] =
barks(fido)

[[a dog barks]] =

x

dog(x)

barks(x)

A pronoun would be represented in DRT as a variable whose antecedent must be resolved:

[[he walks]] =

x

walks(x)

x = ?

DRT becomes particularly interesting as we add more information (new sentences) to the discourse.
When we add a new sentence, we “merge” it into the existing discourse by adding its referents to
the existing set of referents and adding its conditions to the existing set of conditions. Once the
new sentence is merged in, any unbound pronouns in the new sentence can be resolved.

[[A dog barks. He walks.]] =

x

dog(x)

barks(x)
⊕

y

walks(y)

y = ?
=

x y

dog(x)

barks(x)
walks(y)
y = x

Note, however, that pronouns can only be resolved to “accessible” referents, which are referents in
the current box or any out-scoping box. Thus, the pronoun in this discourse fails to resolve:

6



[[No dog barks. He walks.]] = ¬
x

dog(x)

barks(x)

⊕
y

walks(y)

y = ?
=

y

¬
x

dog(x)

barks(x)

walks(y)
y = ?

[[Every dog barks. He walks.]] = x

dog(x)
⇒

barks(x)
⊕

y

walks(y)

y = ?

=

y

x

dog(x)
⇒

barks(x)

walks(y)
y = ?

9 Textual Entailment

Typically, when we are working in semantics, we don’t merely want to represent meanings, we
usually want to use those meanings to perform tasks.

One such task is textual entailment, which is determining whether one piece of text entails another.
Converting to logical form allows us to use standard first-order theorem proving to determine
whether one text entails another:

“Fido barks and sleeps.” � “Fido barks.”

barks′(fido′) ∧ sleeps′(fido′) � barks′(fido′)

“Fido barks.” 6� “Fido barks and sleeps.”

barks′(fido′) 6� barks′(fido′) ∧ sleeps′(fido′)

“Every dog barks.” � “A dog barks.”

∀x.[dog′(x)⇒ barks′(x)] � ∃x.[dog′(x) ∧ barks′(x)]

“A dog barks.” � “Every dog barks.”

∃x.[dog′(x) ∧ barks′(x)] � ∀x.[dog′(x)⇒ barks′(x)]

“Every dog barks.” � “Fido is a dog and fido barks.”

∀x.[dog′(x)⇒ barks′(x)] � dog′(fido′) ∧ barks′(fido′)]

7



10 Issues with Logical Semantics

The principle of compositionality doesn’t hold for idioms:

“Bill kicked the bucket.” �?“A bucket was kicked.”

It doesn’t handle word sense:

“The player picked up the bat.” �?“The player picked up an animal.”

“The bat flew out of the cave.” �?“A baseball bat few out of a cave.”

It doesn’t have any notion of likelihood.

• In some contexts it may be ambiguous whether an idiom is being used or not.

• In some contexts two sense may be possible, one sense may be more likely than another.

8


