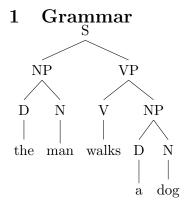
NLP: Parsing

Dan Garrette dhg@cs.utexas.edu

December 27, 2013



- "Consitiuency" parse
- S (sentence), NP (noun phrase), VP (verb phrase) are constituents
- Words combine to make phrases, and phrases combine to make larger phrases and sentences.

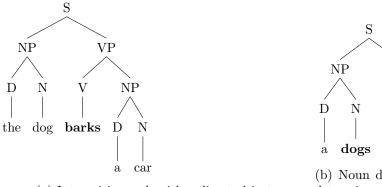
2 Context-Free Grammars (CFG)

• Context-free grammars can be specified by a table of "productions"

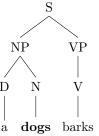
 \mathbf{S} $D \rightarrow \{the, a\}$ NP VP \rightarrow $N \rightarrow \{man, dog\}$ NP D N ("a dog barks") \rightarrow NP Ν ("dogs bark") \rightarrow {barks, walks, saw} VP V NP (transitive verb) V \rightarrow \rightarrow VP V \rightarrow (intransitive verb)

• Words are called "terminals" and other nodes are "non-terminals"

- Independence assumption: each rule choice is dependent only on the parent node; it is independent of all other rule choices
- Independence assumption leads to many problems. A couple:



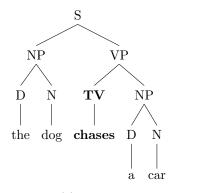
(a) Intransitive verb with a direct object



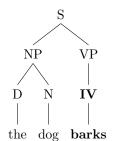
(b) Noun doesn't agree in number with determiner or verb

• We can solve some of these issues by refining our CFG. For example:

$VP \rightarrow$	IV	(intransitive verb	b) IV	\rightarrow	$\{barks, walks\}$
$VP \rightarrow$	TV NP	(transitive verb)	TV	\rightarrow	$\{chases, walks\}$



(c) Intransitive verbs are disallowed



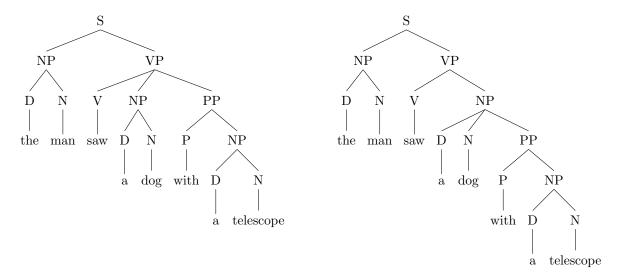
(d) Transitive verbs are disallowed

3 Syntactic Ambiguity

- For a given CFG, there can be multiple trees that describe the same sentence
- Add the following rules to the above:

NP	\rightarrow	D N PP	(prep phrase attach to noun)	Ν	\rightarrow	$\{telescope\}$
VP	\rightarrow	V NP PP	(prep phrase attach to verb)			
PP	\rightarrow	P NP	("in the house")			

• "The man saw a dog with a telescope"



- Ambiguity is explosive
- A sentence ending in n prepositional phrases has over 2^n parses (catalan numbers)
 - "I saw the man with the telescope": 2 parses
 - "I saw the man on the hill with the telescope": 5 parses
 - "I saw the man on the hill in texas with the telescope": 14 parses
 - "I saw the man on the hill in texas with the telescope at noon": 42 parses
 - "I saw the mon on the hill in texas with the telescope at noon on monday": 132 parses

4 Agreement

- In order for a sentence to be grammatical, we must also respect agreement rules
 - number: a dog vs. all dogs
 - person: 1st person (I am), 2nd person (you are), 3rd person (he is)
 - gender: un homme vs. use femme or even she sees herself

- The grammar defined above does not enforce this
 - For an NP, since productions are independent of each other, we could get either dog or dogs no matter whether the D is a or all
- We can incorporate this into our grammar by duplicating our productions to ensure agreement:

		$\begin{array}{l} {\rm NP}_{\rm sg} \ {\rm VP}_{\rm sg} \\ {\rm NP}_{\rm pl} \ {\rm VP}_{\rm pl} \end{array}$			$ \{ the, a \} \\ \{ the, all \} $
$\rm NP_{pl}$	\rightarrow		$\begin{array}{l} (\text{``dogs bark''}) \\ (\text{``all dogs bark''}) \\ (\text{``a dog barks''}) \end{array}$		$\{ dog \} \\ \{ dogs \}$
VP_{sg}	\rightarrow	V_{sg} NP _{sg}	("a dog <u>barks</u> ") ("a dog <u>chases a car</u> ") ("a dog <u>chases cars</u> ")	.0	{barks, walks, sees} {bark, walk, see}
$\mathrm{VP}_{\mathrm{pl}}^{\mathrm{I}}$	\rightarrow	$\dot{V_{pl}} NP_{sg}$	("all dogs <u>bark</u> ") ("all dogs <u>chase a car</u> ") ("all dogs <u>chase cars</u> ")		

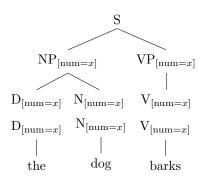
- But this quickly explodes the number of rules
- And the explosion is worse with more agreement rules:

$VP_{sg,1st,masc}$	\rightarrow	$V_{\rm sg,1st,masc}$
$VP_{sg,1st,fem}$	\rightarrow	$V_{sg,1st,fem}$
$VP_{sg,2nd,masc}$	\rightarrow	$V_{\rm sg,2nd,masc}$
$\mathrm{VP}_{\mathrm{sg},\mathrm{2nd},\mathrm{fem}}$	\rightarrow	$V_{sg,2nd,fem}$
$\mathrm{VP}_{\mathrm{pl},\mathrm{3rd},\mathrm{fem}}$	\rightarrow	$V_{\rm pl, 3rd, fem}$

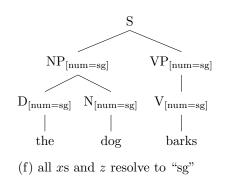
• We can simplify this greatly using *feature structures* that use variables to ensure agreement

$S \rightarrow$	$NP_{[num=x]} VP_{[num=x]}$	$D_{[num=sg]}$	\rightarrow	$\{a, every\}$
$NP_{[num=x]} \rightarrow$	$D_{[num=x]} N_{[num=x]}$	$\begin{array}{l} D_{[num=pl]} \\ D_{[num=z]} \end{array}$		$all, some \\ the \}$
$\begin{array}{l} \operatorname{VP}_{[\operatorname{num}=x]} & \to \\ \operatorname{VP}_{[\operatorname{num}=x]} & \to \end{array}$	$ \begin{array}{l} V_{[num=x]} \\ V_{[num=x]} & NP_{[num=y]} \end{array} $	${f N}_{[num=sg]} \ {f N}_{[num=pl]}$	ightarrow	$\{dog\}$ $\{dogs\}$
		V _[num=sg]	\rightarrow	{barks, walks, sees} {bark, walk, see}

- Feature structures must *unify* as they are combined
 - For example, all xs and z must resolve to the same value (sg or pl)



(e) Need to unify underspecified features in the rules with secified features in the N and V terminal rules



• Similar features could be set up for other required agreements

```
- PRO[num=sg, per=3rd, gen=masc] \rightarrow il
```

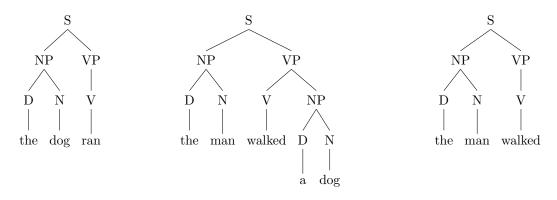
5 Probabilistic Context-Free Grammars (PCFG)

- A CFG is deterministic
 - It can decide whether a sentence is in the language (grammatical), or not
 - It can't judge whether one sentence is more likely than another
 - Problematic since we want to say that every sentence is *possible*, even if it's not likely
- A PCFG is a CFG in which, for every non-terminal, we have a probability distribution over possible productions
- In other words, for each non-terminal A, we have a distribution $p(\beta \mid A)$
 - The probability that, given a parent non-terminal A, we choose the production rule that yields β
 - We can alternatively write this as $p(A\to\beta)$

\mathbf{S}	\rightarrow	NP VP	1.0		\rightarrow \rightarrow		$\begin{array}{c} 0.6 \\ 0.4 \end{array}$
NP	\rightarrow	DΝ	0.7	Ľ	,	a	0.1
		Ν	0.2	Ν	\rightarrow	man	0.5
NP	\rightarrow	D N PP	0.1			dog	0.4
				Ν	\rightarrow	telescope	0.1
\mathbf{VP}	\rightarrow	V NP	0.4				
\mathbf{VP}	\rightarrow	V	0.4	V	\rightarrow	barks	0.2
\mathbf{VP}	\rightarrow	V NP PP	0.2	V	\rightarrow	walks	0.4
				V	\rightarrow	saw	0.4

Estimating parameters (MLE)

- We can calculate the MLE parameters of a PCFG model by counting productions in a corpus of parse trees
- Assume these three sentences comprise a corpus:



• We estimate by counting up all productions in the corpus and normalizing

- Since every non-terminal A must produce *something*, we can simplify slightly

$$p(\beta \mid A) = \frac{C(A \to \beta)}{\sum_{\beta' \in P} C(A \to \beta')} = \frac{C(A \to \beta)}{C(A)}$$

• Estimates from the above corpus of trees yield:

		$C(A \to \beta)$	$p(\beta \mid A)$				$C(A \to \beta)$	$p(\beta \mid A)$
$S \rightarrow$	NP VP	3	1.0	D	\rightarrow	the	3	0.75
				D	\rightarrow	a	1	0.25
$\rm NP \rightarrow$	DΝ	4	1.0					
				Ν	\rightarrow	dog	2	0.5
$VP \rightarrow$	V	2	0.66	Ν	\rightarrow	man	2	0.5
$VP \rightarrow$	V NP	1	0.33					
				V	\rightarrow	walked	2	0.66
				V	\rightarrow	ran	1	0.33

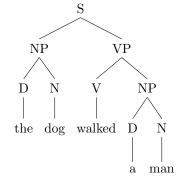
Add- λ smoothing

• Same as always (where P is the set of all possible β s produced):

$$p(\beta \mid A) = \frac{C(A \to \beta) + \lambda}{\sum_{\beta' \in P} (C(A \to \beta') + \lambda)} = \frac{C(A \to \beta) + \lambda}{(\sum_{\beta' \in P} C(A \to \beta')) + \lambda|P|} = \frac{C(A \to \beta) + \lambda}{C(A) + \lambda|P|}$$

Likelihood of a (parsed) sentence

- We can use this to calculate the likelihood of seeing a particular parse of a particular sentence
- Multiply the probabilities of all productions found in the tree
- Assume this tree:



• Count up the number of each production in the tree, and get the probability of each production from the above table

			count	prob				count	prob
S	\rightarrow	NP VP	1	1.0	D	\rightarrow	the	1	0.75
					D	\rightarrow	a	1	0.25
NP	\rightarrow	D N	2	1.0					
					Ν	\rightarrow	dog	1	0.5
VP	\rightarrow	V NP	1	0.33	Ν	\rightarrow	man	1	0.5
					V	\rightarrow	walked	1	0.66

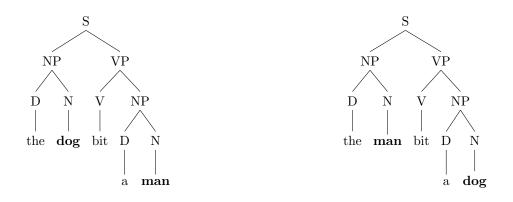
• Find the product:

$$\begin{split} p(\mathbf{S} \to \mathbf{NP} \ \mathbf{VP}) \cdot p(\mathbf{NP} \to \mathbf{D} \ \mathbf{N})^2 \cdot p(\mathbf{VP} \to \mathbf{V} \ \mathbf{NP}) \cdot p(\mathbf{D} \to the) \cdot p(\mathbf{D} \to a) \cdot p(\mathbf{N} \to dog) \\ \cdot p(\mathbf{N} \to man) \cdot p(\mathbf{V} \to walked) \\ = 1.0 \cdot 1.0^2 \cdot 0.33 \cdot 0.75 \cdot 0.25 \cdot 0.5 \cdot 0.66 \end{split}$$

• Note that the $p(NP \rightarrow D N)$ term is squared since the production "NP $\rightarrow D N$ " appears twice in the tree

6 Lexicalized Grammars

- Problem: trees do not take semantic coherence into account
- Production rules are independent

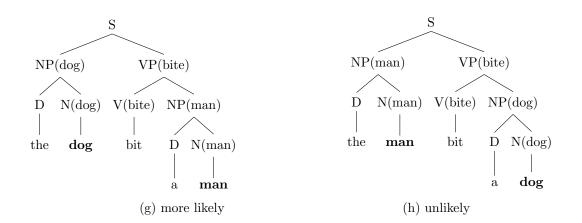


- These two sentence have *exactly* the same likelihood
- Since it's a product, we can swap two productions without changing the result

- Solution: lexicalize the grammar
- Subcategorize rules with their head words:

$egin{array}{c} \mathrm{S} \ \mathrm{S} \ \mathrm{S}^1 \end{array}$	ightarrow ightarrow	NP(man) VP(bite) NP(dog) VP(bite) NP(sandwich) VP(bite)	0.3 0.7 0.0	D D	\rightarrow \rightarrow	the a	$\begin{array}{c} 0.6 \\ 0.4 \end{array}$
$\frac{NP(man)^2}{NP(man)^2}$		D N(man) N(man)	0.8 0.2	${ m N(man)^2} \ { m N(man)^2}$	ightarrow	man men	$\begin{array}{c} 0.7 \\ 0.3 \end{array}$
$\frac{NP(dog)^3}{NP(dog)^3}$		())	0.4 0.6	${ m N(dog)^3} \ { m N(dog)^3}$	$\rightarrow \rightarrow$	0	$0.2 \\ 0.8$
$\begin{array}{c} VP(bite)^4\\ VP(bite)^4\\ VP(bite)^4\\ VP(bite)^5 \end{array}$	$\rightarrow \rightarrow$	V(bite) NP(man) V(bite) NP(dog) V(bite) NP(sandwich) V(bite)	0.2 0.1 0.7 0.0	V(bite) V(bite) V(bite) V(bite)	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$	bite bites biting bit	$0.3 \\ 0.2 \\ 0.1 \\ 0.4$

- $^1\mathrm{Sandwiches}$ don't bite
- ²Men are likely talked about in the singular
- ³Dogs are likely talked about in the plural
- $\,^4\mathrm{Men}$ are bitten infrequently, dogs are bitten less frequently, and sandwiches are bitten often.
- ⁵ "Biting" can't be intransitive
- Downside: increased sparsity!



7 Generative Model

- Like naïve Bayes models, N-Gram models, and hidden Markov models
- Two probability distribution: $p(\beta \mid \alpha)$, for production rules $\alpha \to \beta$, and $p(\sigma)$, where σ is a possible "start" symbol
- Generative story:
 - 1. Choose a start symbol x from the distribution over start symbols $p(\sigma)$
 - 2. If x is a terminal, STOP
 - 3. Else, choose some β from $p(\beta \mid x)$
 - 4. For each symbol y in β , go to step 2
- For each node with symbol x, we choose a production rule of the form $x \to \beta$ according to their probabilities and then recursively choose rules for every node in β until we reach terminals for all branches.

8 Parsing

Top-Down

- Never try to build tree that doesn't make a sentence.
- Waste time exploring trees that don't end up with the correct words.

Bottom-Up

- Never make a tree that doesn't start with the right words.
- Waste time exploring trees that don't make a sentence.

9 Parsing with P-CKY

Find the mostly likely parse tree t for the sentence $w_0...w_n$

- $\hat{t} = \operatorname{argmax}_t p(t \mid w_0 \dots w_n)$
- Since we know how to find the likelihood of a parse (from above), we could enumerate all possible trees, and find the likelihood of each one.
- But the number of possible trees is enormous
- We will use a *dynamic programming* algorithm to find the best parse tree: P-CKY
- Probabilistic version of the CKY algorithm, which can be used with any CFG
- Analgous to the Viterbi algorithm (both are dynamic programming algorithms)

Chomsky Normal Form (CNF)

- CKY requires that the grammar be in CNF
- All productions must be one of:
 - Non-terminal producing exactly 2 non-terminals: $A \rightarrow B C$ Non-terminal producing exactly 1 non-terminal: $A \rightarrow B$ Non-terminal producing exactly 1 terminal: $A \rightarrow w$
- Any CFG can be convered to CNF
 - Producing more than two nonterminals: "A \rightarrow B ... Y Z" becomes
 - * $A \rightarrow B \dots [Y+Z]$ $[Y+Z] \rightarrow Y Z$
 - * Repeat as necessary until you just have A \rightarrow B X
 - * NP \rightarrow D Adj N becomes NP \rightarrow D [Adj+N] [Adj+N] \rightarrow Adj N
 - For our trees we should never have terminals and nonterminals mixed in productions since all terminals a produced by unary rules from POS tags, which never produce anything other than terminals. (But if we needed to we could create dummy nonterminals for those terminals.)

P-CKY Idea

- 1. Make a pass over the whole sentence, trying to find subtrees that explain spans within the sentence
- 2. Dynamic programming: store intermediate results in a chart
- 3. Start with the leftmost word. For each non-terminal (NT), find the most plausible subtree that covers just that word.

- 4. Move to the next word
 - a. Again, for each NT, find the most plausible subtree that covers just that word.
 - b. Then, for each NT, find the most plausible subtree that covers both the word and the previous word.
 - c. Same for the three-word span of the word and the previous two words.
 - d. Continue until you have the entire span from the beginning of the sentence to the word.
 - e. Then move to the next word and repeat.
- 5. You are finished when you have, for each NT, the most plausible tree covering the entire span of the sentence.
- 6. Pick the root node that is most plausible considering the *a priori* probability of an NT being the root of a sentence.

P-CKY Algorithm

- NT is the set of all non-terminals (including composites and POS tags)
- $N = \text{length of sentence } w_0 \dots w_{N-1}$
- table[i,j][A] is the best possible score for a subtree spanning words $w_i...w_{j-1}$ with A as its root
- back[i,j][A] = (k,B,C) indicates that the best possible subtree spanning words $w_i...w_{j-1}$ with A as its root is comprised of a left subtree spanning words $w_i...w_{k-1}$ with B as its root and a right subtree spanning words $w_k...w_{j-1}$ with C as its root.

10 P-CKY Example

"the complex houses married students"

NP[the complex houses] VP[V[married] NP[N[students]]] NP[this complex] VP[V[houses] [NP[A[married] [N students]]]

11 N-Best Parses

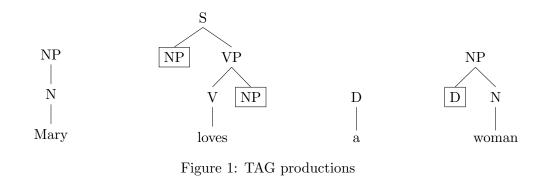
Useful for providing multiple possiblities to down-stream applications.

Can be fed into a discriminative re-ranker that uses something like MaxEnt with features built from linguistic knowlege to re-score the parses. The discriminative model wouldn't be used for *parsing*, just to calculate the likelihoods of the parses that were found.

12 Other Grammatical Formalisms

12.1 TAG: Tree-Adjoining Grammar

- http://www.seas.upenn.edu/~joshi/joshi-schabes-tag-97.pdf
- Instead of single-layer production rules of a CFG, production rules are tree fragments
- Fragments have "incomplete" nodes that must produce to other tree fragments. (Just like how "incomplete" nodes in a CFG must produce the next rule.)
- Lexicalized: Each fragment centered around a word
- Mildly context-sensitive (as opposed to context-free)



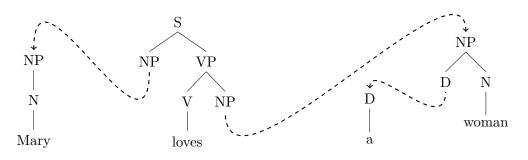


Figure 2: TAG fragment combination giving parse for "Mary loves a woman"

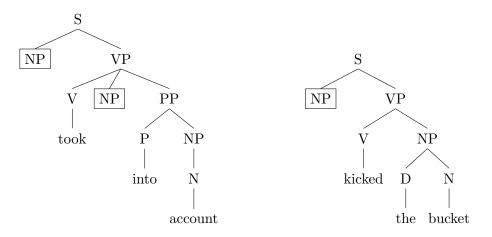


Figure 3: TAG productions for common phrases

12.2 CCG: Combinatory Categorial Grammar

- Instead of atomic POS tags and Non-Terminals, use *categories* that are constructed from other categories:
 - Categories are defined by a (context-free) grammar atomic categories: C \rightarrow { S, NP, N } complex categories: C \rightarrow { C/C, C\C }
 - Slash and backslash operators indicate that the category is a function:
 - * A/B is a category that looks directly to its **right** for something of category B, and combines with it to produce an A
 - * A\B is a category that looks directly to its **left** for something of category B, and combines with it to produce an A
 - * So B is the *input* to the function, and A is the output
- Mildly context-sensitive
- Weakly equivalent to TAG

Words are assigned categories in the *Lexicon*:

Mary: NP sleeps: S\NP loves: (S\NP)/NP a: NP/N woman: N

The parse tree for a sentence, then, is the result of doing the combinations:

12.3 Dependency Parsing

Figure 4: Series of CCG combinations to parse "Mary sleeps"

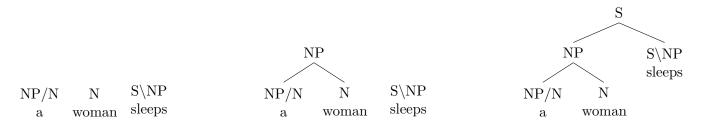


Figure 5: Series of CCG combinations to parse "a woman sleeps"

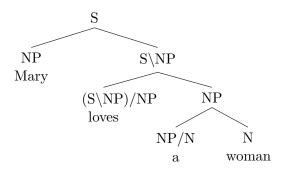


Figure 6: CCG parse tree for "Mary loves a woman"

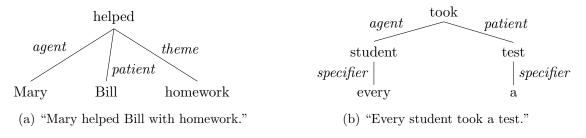


Figure 7: Dependency parse trees

Initialize table to be an N+1 x N+1 array (for (best-so-far) scores) Initialize back to be an $N+1 \ge N+1$ array (for backpointers) for $j \leftarrow 1$ to N do // Fill in the bottom of the chart (single-word spans): i = j - 1;for $A \leftarrow NT$ (or restrict to just POS tags if convenient) do // A is a potential POS tag for w_i if $p(w_i | A) > 0.0$ then $// A \rightarrow w_i$ is a valid rule $table[i,j][a] = p(w_i \mid A)$ $back[i,j][a] = w_i$ // Fill in the higher levels of the chart (multi-word spans) for $i \leftarrow j$ -1 downto 0 do // Binary Rules (with k as pivot) for $k \leftarrow i+1$ to j-1 do for $B \leftarrow table[i,k]$ and $C \leftarrow table[k,j]$ do // B is the root of a sub-tree covering the span $w_i...w_{k-1}$ // C is the root of a sub-tree covering the span $w_k...w_{j-1}$ for $A \leftarrow NT$ (or restrict to just non-POS tags if convenient) do // A is a potential root for the subtree spanning $w_i...w_{i-1}$ if $p(B \ C \mid A) > 0.0$ then $//A \rightarrow B \ C \ is \ a \ valid \ rule$ $s = p(B \ C \mid A) \cdot table[i,k][B] \cdot table[k,j][C]$ if table[i, j] doesn't contain A OR table[i, j][A] < s then // Either we haven't seen a valid subtree coverting i to j with root A, // or this new subtree has a higher score table[i,j][A] = sback[i,j][A] = (k, B, C)// Unary Rules done = falsewhile !done do done = truefor $B \leftarrow table[i, j]$ do // B is the root of a sub-tree covering the span $w_i...w_{i-1}$ for $A \leftarrow NT$ (or restrict to just non-POS, non-compound tags if convenient) do // A is a potential root for the subtree spanning $w_i...w_{i-1}$ if $p(B \mid A) > 0.0$ then $// A \rightarrow B$ is a valid rule $s = p(B \mid A) \cdot \texttt{table[i,j][B]}$ if table[i, j] doesn't contain A OR table[i, j][A] < s then // Either we haven't seen a valid subtree coverting i to j with root A, // or this new subtree has a higher score table[i,j][A] = sback[i,j][A] = Bdone = false // if we added a new NT, then re-check

Algorithm 2: Retrieve the best-parse tree from the backpointer table

 $\operatorname{Leaf}(w)$

```
// Select the best root element while considering the prior over all potential root elements
                     table[0,N][S] \cdot p(S)
root =
          argmax
       S \leftarrow table[0,N]
if table[0,N][root] \cdot p(root) = 0.0 then
 // There is no valid parse of the sentence
else
 | FollowBackpointers(root, 0, N)
Function FollowBackpointers(A, i, j) : Tree
   back[i,j][A] match
                              // Binary branch
      case (k, B, C) \Rightarrow
         Tree(A, FollowBackpointers(B, i, k), FollowBackpointers(C, k, j))
      \mathbf{case} ~ B \Rightarrow
                      // Unary branch
         Tree(A, FollowBackpointers(B, i, j))
      case w \Rightarrow
                      // Terminal (word)
```

16