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1 Tagging

• Named entities

• Parts of speech

2 Parts of Speech

Tagsets

• Google Universal Tagset, 12: Noun, Verb, Adjective, Adverb, Pronoun, Determiner, Ad-
position (prepositions and postpositions), Numerals, Conjunctions, Particles, Punctuation,
Other

• Penn Treebank, 45. Includes 4 categores of noun, 4 categories of pronoun, and 6 categories
of verb.

• Brown Corpus, 87

Deciding what categories

• Auxilliary verbs? “I had gone”

• Numbers as adjectives? “I saw 4 cars”

• Count vs. mass nouns? “some apple” vs. “two apples”, “some snow” vs. “two snows”

Uses

• Parsing: determiner and noun should connect first, then to verb

• Speech synthesis: OBject (noun) vs. obJECT (verb), CONtent (noun) vs. conTENT (adj)

Rule-based
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• “if it ends in ‘-tion’ ” → Noun

• “if it ends in ‘-ize’ ” → Verb

• “if it starts with ‘re-’ ” → Verb

• “if it starts with a capital letter” → Proper Noun

• “if it’s preceded by ‘the’ ” → Noun

• “if it’s followed by ’s ” → Noun

• “if it’s preceded by an adjective” → Noun

• Or just memorize a big list of words and tags?

– Ambiguity?

– Picking the most common tag for a word → 90% accuracy (thought state-of-the-art is
97%)

Open vs. Closed

• Open class tags: new words are frequently added

– noun, verb, adjective, adverb

– “Twitter”, to “tweet”, “twitterish”

• Closed class tags: new words are rarely added

– determiner, preposition, pronouns, ...

– Don’t want to completely close off new words

– Maybe alongside (preposition) wasn’t seen in training, only test

– New domains: “u” as a pronoun

Complexitites:

• Ambiguity:

– “buy a book” (noun) vs. “book a flight” (verb)

– “talk over the deal” (particle) vs. “talk over the phone” (prep)

• Phrasal verbs: “turn down”, “rule out”

– “he went on for days”

– “he went on a boat”
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3 Hidden Markov Models

Similar to N-Gram models

• Model the text as a sequence

– Bad assumption, but less sparse

• For ngrams, we modeled the probability of each word conditioned on the previous n-1 words.

• Here, we model each tag conditioned on previous tags

• Still uses Markov assumption: only look back a few tags

– Again, bad assumption, but less sparse

• Note that we have to condition words on tags because otherwise

\\ Day 2

Derivation

• We want the most likely tag sequence for a sequence of words:

p(〈s〉 t1 t2 ... tn 〈e〉 | 〈s〉 w1 w2 ... wn 〈e〉)

Remember that order matters!

• For simplicity, we’ll write this as tn1 = 〈t1, t2, ..., tn〉

• So we want

t̂n1 = argmaxtn1 p(〈s〉 t1 t2 ... tn 〈e〉 | 〈s〉 w1 w2 ... wn 〈e〉)

but it’s hard to estimate

• Like for ngrams, use Bayes rule:

t̂n1 = argmaxtn1
p(〈s〉 w1 w2 ... wn 〈e〉 | 〈s〉 t1 t2 ... tn 〈e〉) · p(〈s〉 t1 t2 ... tn 〈e〉

p(〈s〉 w1 w2 ... wn 〈e〉)
= argmaxtn1 p(〈s〉 w1 w2 ... wn 〈e〉 | 〈s〉 t1 t2 ... tn 〈e〉) · p(〈s〉 t1 t2 ... tn 〈e〉)

• Two major independence assumptions:

– Like ngrams, assume probability of a sequence is dependent only on recent past:

p(〈s〉 t1 t2 ... tn 〈e〉) ≈ p(t1 | 〈s〉) · p(t2 | t1) · p(t2 | t2) · ... · p(tn | tn−1) · p(〈e〉 | tn)

=
n∏
i=1

p(ti | ti−1)
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– Also assume word is only dependent on its tag:

p(〈s〉 w1 w2 ... wn 〈e〉 | 〈s〉 t1 t2 ... tn 〈e〉) ≈ p(w1 | t1) · p(w2 | t2) · ... · p(wn | tn)

=

n∏
i=1

p(wi | ti)

– Together:

t̂n1 = argmaxtn1 p(〈s〉 t1 t2 ... tn 〈e〉 | 〈s〉 w1 w2 ... wn 〈e〉)

= argmaxtn1 p(〈s〉 w1 w2 ... wn 〈e〉 | 〈s〉 t1 t2 ... tn 〈e〉) · p(〈s〉 t1 t2 ... tn 〈e〉)

≈ argmaxtn1

n∏
i=1

p(wi | ti) ·
n∏
i=1

p(ti | ti−1)

= argmaxtn1

n∏
i=1

p(wi | ti) · p(ti | ti−1)

4 Estimating Parameters: MLE

Two probability distributions to estimate:

• Transitions: probability of a tag, given previous tag, p(ti | ti−1)

• Emissions: probability of a word, given its tag, p(wi | ti)

MLE

• MLE estimation is just like before (näıve Bayes, ngrams, ...): normalized counts

• Transitions: p(ti | ti−1) = C(ti−1 ti)∑
x C(ti−1 x) = C(ti−1 ti)

C(ti−1)

• Emissions: p(wi | ti) = C(ti,wi)∑
x C(ti,x)

= C(ti,wi)
C(ti)

Example dataset (punctuation excluded for simplicity!):

<S>|<S> the|D man|N walks|V the|D dog|N <E>|<E>

<S>|<S> the|D dog|N runs|V <E>|<E>

<S>|<S> the|D dog|N walks|V <E>|<E>

<S>|<S> the|D man|N walks|V <E>|<E>

<S>|<S> a|D man|N saw|V the|D dog|N <E>|<E>

<S>|<S> the|D cat|N walks|V <E>|<E>

Some probabilities:

• p(ti = V | ti−1 = N) = C(N V)∑
x C(N x) = 6

8 = 0.75
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• p(ti = D | ti−1 = N) = C(N D)∑
x C(N x) = 0

8 = 0.0

• p(wi = dog | ti = N) = C(N,dog)∑
x C(N,x) = 4

8 = 0.50

• p(wi = the | ti = N) = C(N,the)∑
x C(N,x) = 0

8 = 0.0

5 Add-λ Smoothing

Again, just like before.

• Transitions: p(ti | ti−1) = C(ti−1 ti)+λ∑
x(C(ti−1 x)+λ) = C(ti−1 ti)+λ

(
∑

x C(ti−1 x))+λ·|T | = C(ti−1 ti)+λ
C(ti−1)+λ·|T |

• Emissions: p(wi | ti) = C(ti,wi)+λ∑
x(C(ti,x)+λ)

= C(ti,wi)+λ
(
∑

x C(ti,x))+λ·|V | = C(ti,wi)+λ
C(ti)+λ·|V |

Some probabilities (with λ = 2):

• The Vocabulary V is the set of all word types that might be associated with a tag ti:

V = {a, cat, dog,man, runs, saw, the, walks}, |V | = 8

• The Tagset T is the set of all possible tags that could follow a tag ti−1:

T = {D,N, V, 〈e〉}, |T | = 4

• p(ti = V | ti−1 = N) = C(N V)+2∑
x∈T (C(N x)+2) = C(N V)+2

(
∑

x∈T C(N x))+(2·4) = 6+2
8+8 = 8

16 = 0.50

• p(ti = D | ti−1 = N) = C(N D)+2∑
x∈T (C(N x)+2) = C(N D)+2

(
∑

x∈T C(N x))+(2·4) = 0+2
8+8 = 2

16 = 0.125

• p(wi = dog | ti = N) = C(N,dog)∑
x∈V (C(N,x)+2) = C(N,dog)

(
∑

x∈V C(N,x))+(2·8) = 4+2
8+16 = 0.25

• p(wi = the | ti = N) = C(N,the)∑
x∈V (C(N,x)+2) = C(N,the)

(
∑

x∈V C(N,x))+(2·8) = 0+2
8+16 = 0.08

Differences:

• Two distributions, two kinds of smoothing

• Can do add-λ for both, but don’t need to use same λ

• Can use totally different smoothing for each.
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6 One-Count Smoothing

From Chen and Goodman (1996)

Idea: Smooth conditional distribution by interpolating the MLE with a unigram distribution where
the degree of smoothing is proportional to the “openness” of a tag.

p(ti | ti−1) =
C(ti−1, ti) + α(ti−1) · p(ti)

C(ti−1) + α(ti−1)
where α(ti−1) = |ti : C(ti−1, ti) = 1|

p(wi | ti) =
C(ti, wi) + β(ti) · p(wi)

C(ti) + β(ti)
where β(ti) = |wi : C(ti, wi) = 1|

• For emissions, if a tag ti appears one time with a large number of word types, then we assume
that it is very “open”: there is a large number of words that it has only been seen with once,
so the likelihood that it could have been seen with some other word, even though it didn’t
happen to be seen with it, is high.

• For transitions, the reasoning is the same. Instead of a tag being associated with a wide
variety of words once, it’s a wide variety of subsequent tags once.

• Note that it is still necessary to smooth the prior distributions p(ti−1) and p(wi) since if the
transition or emission count is zero, we need to ensure that we back off to some non-zero
value; add-1 smoothing should be sufficient. Additionally, It is necessary to add some small
amount to α(ti−1) and β(ti) in case there are no singletons

7 Three Tasks for HMM

1. Likelihood: Given a tagged sequence, determine its likelihood

2. Decoding: Given an untagged sequence, determine the best tag sequence for it

3. Learning: Given an untagged sequence, and a set of tags, learn the HMM parameters.

8 Likelihood of a tagged sentence

We can compute the likelihood of a particluar sequence of tags for a sentence:

• p(t1...tn | w1...wn) =
∏n
i=1 p(wi | ti) · p(ti | ti−1)

Example: “the|D dog|N walks|V”

p(t1...tn | w1...wn) ≈
n∏
i=1

p(wi | ti) · p(ti | ti−1)

= p(D | 〈s〉) · p(the | D) · p(N | D) · p(dog | N) · p(V | N) · p(walks | V ) · p(〈e〉 | V )
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Figure 1: Second-order HMM showing conditional dependencies
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Figure 2: Second-order HMM for the sentence “the man walks .”
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Figure 3: Finite state machine of the data with add-1 smoothing. Missing arrows are assumed to
be zero probabilities. With smoothing, there is an arrow in both directions between every pair of
tags.
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• This says that the probability of the tag sequence is the probability of seeing D as the first
tag, the given that the chosen first tag was D, N given that the previous tag was D, dog given
that the chosen second tag was N, etc...

• Transition (p(ti | ti−1)) and emission (p(wi | ti)) values are calculated as above

9 Decoding

Tagging a sentence

• t̂ni = argmaxtn1 p(t1...tn | w1...wn) ≈ argmaxtn1
∏n
i=1 p(wi | ti) · p(ti | ti−1)

• For “the dog walks”, we have to check all combinations:

〈s〉 D D D 〈e〉

〈s〉 N D D 〈e〉

〈s〉 V D D 〈e〉

〈s〉 . D D 〈e〉

〈s〉 N N D 〈e〉

〈s〉 N V D 〈e〉

...

• But this is insane.

\\ Day 3

Choosing a tag

• Because of our independence assumptions, the probability of each tag is dependent only on
its “Markov blanket”: the previous tag, emitted word, and next tag.

p(ti | 〈s〉 w1 w2 ... wn 〈e〉, 〈s〉 t1 t2 ... ti−1 ti+1 ... tn 〈e〉) = p(ti | ti−1, wi, ti+1)

= p(ti | ti−1) · p(wi | ti) · p(ti+1 | ti)

Tagging a sentence

• We want to make global decisions about tags.

• Due to independence, global decisions are made in terms of local decisions

• Tagging “forward” through the sentence allows us to predict tags based on previous decisions.

• But we can’t calculate picking a tag changes the probabilities of previous tags.

The Viterbi Algorithm
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• We need to check all possible tag combinations efficiently : dynamic programming

• We do this by making two passes through the sentence: one forward through the sentence
and one backward

• The forward pass

– Compute, for each potential tag value k of ti in the sentence, the highest probability
sequence of tags for the previous i-1 words and ending with ti = k, given all possible
ways of tagging the i-1 previous words. This can be simplified with our independence
assumptions.

vi(k) = maxt1,...,ti−1 p(w1, ..., wi, t1, ..., ti−1, ti = k)

= p(wi | k) ·maxk′∈T vi−1(k
′) · p(k | k′)

– vi(k) is the probability of the most likely subsequence of tags that accounts for the first
i words and ends with tag ti = k.

– So k is the potential tag for the current token i

– k′ is a potential tag for the previous token i-1.

– In terms of the Markov blanket, this covers the connections to the previous tag and
the emitted word

• The backward pass

– Starting at the end of the sentence with t̂N = 〈e〉, use each chosen “next tag” along with
the viterbi scores (probability of assigning a tag k to ti given the best possible sequence
of tags), to figure out the most likely tag k for ti.

– So:
t̂i = argmaxk∈T vi(k) · P (t̂i+1 | ti = k)

– So the chosen tag is one that has a maximally plausible preceding sequence of tags and
best connects to the just-selected “next” tag.

– In terms of the Markov blanket, this adds in the connection to the next tag (since it
has now been decided) to the forward probability which is made up of connections to
the previous tag and the emitted word

10 Tag Dictionary

• Mapping from words to potential tags

• Get from train, assume it works on test

• Unseen words usually assumed to be any possible tag. Could, instead, assume only open-class
tags.

• Prune low-probability tags.
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11 Semi-Supervised Learning: The Forward-Backward Algorithm

• Given some unlabeled text, and a set of labels, learn the best set of parameters for an HMM
tagger.

• Usually needs a tag dictionary to constrain the search space.

• Similar to Viterbi, but instead of finding the max-probability path, we estimate the probability
of each tag for each token.

• forwardi(k): probability of being in state k after seeing the first i words (by summing over
all paths leading to k)

• backwardi(k): probability of seeing sequence of tags from i+1 to N , given that ti = k

forwardi(k) = p(wi | k) ·
∑
k′∈T

p(k | k′) · forwardi−1(k′)

backwardi(k) =
∑
k′∈T

p(k′ | k) · p(wi+1 | k′) · backwardi+1(k
′)

expected transitions from ti = k1 to ti+1 = k2:

forwardi(k1) · p(k2 | k1) · p(wi+1 | k2) · backwardi+1(k2)

p(w1:N )

expected emissions of wi when ti = k

forwardi(k) · backwardi(k)

p(w1:N )

Re-estimating transitions:

p(t2 | t1) =
expected number of transitions from t1 to t2

expected number of transitions from t1

Re-estimating emissions:

p(w | t) =
expected number of times word w occurs with tag t

expected number of times tag t occurs

The Forward-Backward Algorithm (Expectation-Maximization):

• E Step: Use forward and backward to compute the expected transition and emission counts

• M Step: Re-estimate transition and emission distributions from expected counts
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〈s〉

D

N

V

〈e〉

〈s〉 the dog runs 〈e〉

1.0

0.37

0.47

0.007

0.06

0.008

0.07

0.78

0.11
0.11

Figure 4: Viterbi Algorithm: Calculating v1(D), v1(N), and v1(V ). Since 〈s〉 is only choice for the
previous tag, each score v1(k) is calculated as p(the | k) · v0(〈s〉) · p(k | 〈s〉). So, for example,

v1(D) = p(the | D) · v0(〈s〉) · p(D | 〈s〉) = 0.47 · 1.0 · 0.78 = 0.37

11



〈s〉

D

N

V

〈e〉

〈s〉 the dog runs 〈e〉

0.37

0.007

0.008

0.002

0.06

0.29

0.07

0.002

0.00003

0.00014

0.08

0.08
0.

30

Figure 5: Viterbi Algorithm: Find the maximum probability of all possible tag sequences leading
to dog|D at token i. We do so by finding the best previous tag for getting there, given all possible
ways of getting to the previous token. Since each viterbi score v1(k) stores the highest probability
path for getting to t1 = k, all we need to do is find the best way of getting to t2 = D given all the
best ways of getting to each possible tag for the previous token, and the probabilities of getting
from each possible previous tag to k. For example:

v2(D) = p(dog|D) ·max(v1(D) · p(D|D), v1(N) · p(D|N), v1(V ) · p(D|V ))
= 0.06 ·max(0.37 · 0.08, 0.007 · 0.08, 0.008 · 0.30)
= 0.06 ·max(0.03, 0.0006, 0.002)
= 0.06 · 0.03
= 0.002

t1 = D turns out to be the best previous tag for getting to t2 = D, so t1 = D is remem-
bered (with a dotted arrow) as the best way to get to t2 = D.
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Figure 6: Viterbi Algorithm: Calculate v2(N) and find the best path to it, which turns out to be
the path ending with t1 = D.

〈s〉

D

N

V

〈e〉

〈s〉 the dog runs 〈e〉

0.37

0.007

0.008

0.002

0.06

0.08

0.29

0.002

0.07

0.08

0.58

0.10

0.002

0.0003

0.00006

Figure 7: Viterbi Algorithm: Calculate v2(V ) and find the best path to it, which turns out to be
the path ending with t1 = D
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Figure 8: Viterbi Algorithm: Calculate v3(D) and find the best path to it, which turns out to be
the path ending with t2 = N
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Figure 9: Viterbi Algorithm: Calculate v3(N) and find the best path to it, which turns out to be
the path ending with t2 = N
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Figure 10: Viterbi Algorithm: Calculate v3(V ) and find the best path to it, which turns out to be
the path ending with t2 = N
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Figure 11: Viterbi Algorithm: Calculate v4(〈e〉) and find the best path to it, which turns out to
be the path ending with t3 = V
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〈e〉

〈s〉 the dog runs 〈e〉

Figure 12: Viterbi Algorithm: The tag for 〈e〉 is always 〈e〉, so we can always start by selecting
that tag.
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Figure 13: Viterbi Algorithm: For each tag ti+1, we examine the backpointer that indicates the
way to the best path to ti+1, and choose ti accordingly.
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