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1 Classification Tasks

• Language identification: determine the language that a text is written in

• Spam filtering: label emails, tweets, blog comments as spam or not spam

• Routing: label emails to approprate people in an organization (complaints, tech support,
order status, etc)

• Sentiment analysis: label some text as being positive or negative (polarity classification)

Example: Sentiment

• Determine the sentiment (positive vs. negative) of, for example, a tweet

• “Probably the worst movie of the century”

• One idea: Compare of “positive” words (good, great, best) to “negative” words (bad, terrible,
worst).

– Humans give insufficent lists. Learning a sufficent list is hard.

– Words mean different things in different contexts:
“This thing is a great deal. Definitely worth the money.”
“A great deal of media attention surrounded the event.”
“It’s a great deal... if you’re looking to looking to waste your money.”

– Some words can flip polarity:
“It’s not a good investment.”
“I thought it would be terrible, but I was so wrong.”

– Multi-word expressions:
“The movie was shit.”
“The movie was the shit.”

– Subtlety:
“If this movie’s your thing, don’t bother talking to me.”
“Great plot, great acting, great cast, but it just doesn’t hold up.”
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– Can depend on the target:
“Unpredicatable plot”
“Unpredicatable steering”

• Additional Features

– Ngrams: “must buy”, “couldn’t care less”

– Casing: uppercase words are often subjective

– Punctuation: lots of ! or ? can indicate subjectivity

– Emoticons: :) vs. :(

2 Rule-Based System

• Write prediction rules: “If contains X and Y but not Z, then ‘positive’”

• What happens when multiple rules apply but conflict?

– Order the rules according to their accuracy?

– Assign weights to the rules?

• Problems

– Time-consuming and expensive to write rules.

– High precision, low recall

– Rules have to be manually tailored to each dataset (unpredictable vs. unpredictable)

– Expensive to update (new expressions, new slang, new abrvs)

3 Learning

• If we have examples, we can learn a function mapping texts to categories

• Often probabilistic

• Instead of rules, we use features

• Features are automatically weighted based on statistics in the training data.

• Features are dimensions in space.

• Learn a boundary between classes.

• Boundary used to classify new texts.

Some Data
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start=B, end=ia, location

start=B, end=er, person

start=M, end=ia, person

start=L, end=ia, location

start=N, end=er, location

start=B, end=ia, location

start=E, end=nd, location

start=N, end=ia, location

start=A, end=er, person

start=L, end=ke, person

Our Goal

• Learn a function that maps features to the most likely label

• best label = argmaxlabel p(label | features)

Direct Posterior Parameter Estimation from Data

• p(label | features) = C(instances with label and feature)
C(instances with features)

– p(label = location | start = B, end = er) = 0
1 = 0.0

– p(label = person | start = B, end = er) = 1
1 = 1.0

– p(label = location | start = B, end = ia) = 2
2 = 1.0

– p(label = person | start = B, end = ia) = 0
2 = 0.0

• This doesn’t work very well

• Sparsity: any particular feature combination is rare, hard to generalize

• Even worse when every word in a text is a feature

– Every text would be unique, and there would be no generalization at all

– Couldn’t label new instances

Bayes Rule

• p(label | features) = p(features|label)·p(label)
p(features)

• best label = argmaxlabel
p(features|label)·p(label)

p(features)

• If labels = {A,B}: p(features|A)·p(A)
p(features) vs. p(features|B)·p(B)

p(features)

• Denominator is always the same, so: p(features | A)·p(A) vs. p(features | B)·p(B)

• Thus, to compute the posterior, we need two things

– the likelihood of the evidence: p(features | label)
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– the prior: p(label)

Direct Evidence Likelihood Estimation from Data

• p(features | label) = C(instances with features and label)
C(instances with label)

– p(start = B, end = er | label = location) = 0
6 = 0.0

– p(start = B, end = er | label = person) = 1
4 = 0.25

– p(start = B, end = ia | label = location) = 2
6 = 0.33

– p(start = B, end = ia | p(label = person) = 0
4 = 0.0

• Still problematic: still sparse, still lots of zeros, still hard to generalize

Näıve Bayes

• We want to disentangle the features for better generalization

• Compute each feature’s probability independently

• Will be able to compute the probability of an instance from the features even if we haven’t
seen that particular combination of features before.

• Requires us to assume that features are independent

– Not actually true! Language doesn’t work like that.

– But it’s a simplifying assumption

– “Näıve” assumption

• p(features | label) = p(F1, F2, F3, ... | label) = p(F1 | label) · p(F2 | label) · p(F3 | label) · ...

Parameter Estimation from Data

• The prior

– p(label = location) = C(label=location)∑
l C(label=l) = 6

10 = 0.6

– p(label = person) = C(label=person)∑
l C(label=l) = 4

10 = 0.4

• Likelihood of the evidence

– p(start = B | label = location) = C(start=B,label=location)
C(label=location) = 2

6 = 0.33

– p(start = B | label = person) = C(start=B,label=person)
C(label=person) = 1

4 = 0.25

– p(end = ia | label = location) = C(end=ia,label=location)
C(label=location) = 4

6 = 0.67

– p(end = ia | label = person) = C(end=ia,label=person)
C(label=person) = 1

4 = 0.25
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– p(end = nd | label = location) = C(end=nd,label=location)
C(label=location) = 1

6 = 0.17

– p(end = nd | label = person) = C(end=nd,label=person)
C(label=person) = 0

4 = 0.0

Näıve Probabilities

• Before

– p(start = B, end = ia | label = location) = 2
6 = 0.33

– p(start = B, end = ia | p(label = person) = 0
4 = 0.0

• Now

– p(start = B | label = location) · p(end = ia | label = location) = 0.33 · 0.67 = 0.22

– p(start = B | label = location) · p(end = ia | label = person) = 0.25 · 0.25 = 0.06

Classifying

• We get a new instance. Need to determine its label.

• Works even if we haven’t seen the particular combination of features

• start=L, end=er

• p(features | A)·p(A) vs. p(features | B)·p(B)

• p(start = L | location) · p(end = er | location) · p(location) = 1
6 ·

1
6 ·

6
10 = 0.02

• p(start = L | person) · p(end = er | person) · p(person) = 1
4 ·

2
4 ·

4
10 = 0.06

• So, it’s more likely a person

Why Näıve Bayes?

• Modularity: separate out individual features and prior

• Helps us deal with sparsity

– Particular feature combinations are rare

– Individual features are less sparse

– Still have some features that appear only with one label (meaning zero probaiblities),
but this is less common

• Priors

– Controls how much the base label distribution affects the probabilities

– Can be automatically calculated from data (as we’ve seen)

– Can be set from outside knowledge, if available

∗ Imagine we are explicitly told that 3/4 of named entities are people

∗ p(label = person) = 0.75
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∗ p(start = L | location) · p(end = er | location) · p(location) = 1
6 ·

1
6 · 0.25 = 0.007

∗ p(start = L | person) · p(end = er | person) · p(person) = 1
4 ·

2
4 · 0.75 = 0.09

∗ So the likelihood of person is even higher

– Useful for injecting linguistic knowledge into a learned model

// Day 2

4 Smoothing

Classify Austria:

• The prior

– p(label = location) = C(label=location)∑
l C(label=l) = 6

10 = 0.6

– p(label = person) = C(label=person)∑
l C(label=l) = 4

10 = 0.4

• Likelihood of the evidence

– p(end = ia | label = location) = C(end=ia,label=location)
C(label=location) = 4

6 = 0.67

– p(end = ia | label = person) = C(end=ia,label=person)
C(label=person) = 1

4 = 0.25

– p(start = A | label = location) = C(start=A,label=location)
C(label=location) = 0

6 = 0.00

– p(start = A | label = person) = C(start=A,label=person)
C(label=person) = 1

4 = 0.25

• The posterior

– p(label = location | start = A, end = ia)
= p(label = location) · p(start = A | label = location) · p(end = ia | label = location)
= 0.6 · 0.0 · 0.67 = 0.0

– p(label = person | start = A, end = ia)
= p(label = person) · p(start = A | label = person) · p(end = ia | label = person)
= 0.4 · 0.25 · 0.25 = 0.025

• Since 0.025 > 0.0, we pick the label person

• This seems wrong

– end = ia leans strongly toward location (0.67 vs. 0.25)

– location is more likely a priori (0.6 vs 0.4)

– While start = A is leans toward person, it’s not so strong (0.25 vs. 0.00)

– Moreover, we have very little evidence regarding start = A, so we probably shouldn’t
give much weight to it during classification

• Why did we get the wrong answer?

– Since we had no evidence for label = location AND start = A, we got a zero count,
which gave us a zero probability.
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– So, basically, the start = A feature ended up being the only thing that mattered.

– Even though start = A should have been the least important thing in the calculation.

Add-λ smoothing

• We need to avoid having any zero counts.

• More generally, we need to deal with cases in which we have so few counts that it’s hard to
generalize

– C(A) = 1000, C(B) = 2 wouldn’t be considered a lack of evidence

– C(A) = 2, C(B) = 1 probably doesn’t have enough evidence to judge well

• One way to make all the numbers non-zero is to simply add 1 to all of them.

• So if the count was 0, it becomes 1, 1 becomes 2, 100 becomes 101.

• start values = {B,M,L,N,E,A}, end values = {ia,er,nd,ke}

(Feature,
Label)

c(f,l) +1 p(F|L) p+1(F|L) (Feature,
Label)

c(f,l) +1 p(F|L) p+1(F|L)

(B, loc) 2 3 2/6=0.33 3/12=0.25 (B, per) 1 2 1/4=0.25 2/10=0.20
(M, loc) 0 1 0/6=0.00 1/12=0.08 (M, per) 1 2 1/4=0.25 2/10=0.20
(L, loc) 1 2 1/6=0.17 2/12=0.17 (L, per) 1 2 1/4=0.25 2/10=0.20
(N, loc) 2 3 2/6=0.33 3/12=0.25 (N, per) 0 1 0/4=0.00 1/10=0.10
(E, loc) 1 2 1/6=0.17 2/12=0.17 (E, per) 0 1 0/4=0.00 1/10=0.10
(A, loc) 0 1 0/6=0.00 1/12=0.08 (A, per) 1 2 1/4=0.25 2/10=0.20

(·, loc) 6 12 (·, per) 4 10

(ia, loc) 4 5 4/6=0.67 5/10=0.50 (ia, per) 1 2 1/4=0.25 2/8=0.25
(er, loc) 1 2 1/6=0.17 2/10=0.20 (er, per) 2 3 2/4=0.50 3/8=0.38
(nd, loc) 1 2 1/6=0.17 2/10=0.20 (nd, per) 0 1 0/4=0.00 1/8=0.13
(ke, loc) 0 1 0/6=0.00 1/10=0.10 (ke, per) 1 2 1/4=0.25 2/8=0.25

(·, loc) 6 10 (·, per) 4 8

• The count of each (Feature, Label) pair goes up by 1, but the total count for the label across
all features goes up by (1 · (# of Feature V alues))

– Since we add 1 additional count for each (F,L) — even the ones we’ve never seen before
— and there is one (F,L) pair for each possible F, there are 1·|FeatureV alues| additional
counts for the label.

–
∑

f∈Features(C(f, L) + 1) =
(∑

f∈FeatureV aluesC(f, L)
)

+ |FeatureV alues|

– So now, p(feature | label) = C(feature,label)+1
C(label)+(1·|FeatureV alues|)

– If we didn’t increase the denominator:

p(start = B | label = location) = C(start=B,label=location)+1
C(label=location) = 2+1

6 = 3
6 = 0.50

p(start = M | label = location) = C(start=M,label=location)+1
C(label=location) = 0+1

6 = 1
6 = 0.17
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p(start = L | label = location) = C(start=L,label=location)+1
C(label=location) = 1+1

6 = 2
6 = 0.33

p(start = N | label = location) = C(start=N,label=location)+1
C(label=location) = 2+1

6 = 3
6 = 0.50

p(start = E | label = location) = C(start=E,label=location)+1
C(label=location) = 1+1

6 = 2
6 = 0.33

p(start = A | label = location) = C(start=A,label=location)+1
C(label=location) = 0+1

6 = 1
6 = 0.17

∗ But 0.50 · 0.17 · 0.33 · 0.50 · 0.33 · 0.17 = 2.0

∗ Since all the values in a probaiblity distribution must sum to 1.0, we no longer have
a probability distribution

∗ Adding the correct amount to the denominator fixes this problem.

• Smoothing flattens out the distribution

– (Partial) counts are “stolen” from high-count items and “given” to low-count items

– Extreme values are smoothed the most

– The impact of smoothing is depends on the relative values of λ and the counts.

– If there are few overall counts, then a relatively large λ will over-smooth, making all
values approximately the same likelihood.

– If there are many overall counts, then a relatively small λ will not make much impact.

– λ = 0 means no smoothing

– λ =∞ means uniform distributiom (all have equal probability)

• Smoothing changes the relative probabilities of things most when there are low overall counts

– This is good because low counts means low evidence and, thus, low confidence

– We want the impact of evidence to be strong only when we have high confidence

– For näıve Bayes, we always compare p(F | L1) to p(F | L2)

– If counts C(F,L1) and C(F,L2) are small, we want smoothing to push the relative
probabilities together, thus giving them a smaller impact in the NB calculation. (The
most extreme example is equal probabilities, which contribute no information to NB vs
zero counts, which completely dominate the NB calculation).

– If counts C(F,L1) and C(F,L2) are large, we do not want smoothing to have a large
impact on the relative probabilities

– For things with low counts (0 vs. 1), smoothing pushes the relative probabilities close
together
If C(A) = 1, C(B) = 0

∗ p(A) = 1
1 = 1.0 and p(B) = 0.0
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∗ p+1(A) = 2
3 = 0.67 and p+1(B) = 0.33

If C(A) = 2, C(B) = 1

∗ p(A) = 2
3 = 0.67 and p(B) = 0.33

∗ p+1(A) = 3
5 = 0.60 and p+1(B) = 0.40

– For things with non-trivial counts, the smoothed relative probabilities don’t change
much. If C(A) = 30, C(B) = 0

∗ p(A) = 30
30 = 1.0 and p(B) = 0.0

∗ p+1(A) = 31
32 = 0.97 and p+1(B) = 0.03

If C(A) = 20, C(B) = 10

∗ p(A) = 20
30 = 0.67 and p(B) = 0.33

∗ p+1(A) = 21
32 = 0.66 and p+1(B) = 0.44

Classify Austria with Add-1 smoothing

• The prior

– We do not need (or want) to smooth the prior distribution p(Label)

– Smoothing is useful when we have very low or zero counts

– Counts of labels will never be so low that we can’t estimate them

• Likelihood of the evidence

– p(end = ia | label = location) = C(end=ia,label=location)+1
C(label=location)+|end values| = 4+1

6+4 = 5
10 = 0.50

– p(end = ia | label = person) = C(end=ia,label=person)
C(label=person)+|end values| = 1+1

4+4 = 2
8 = 0.25

– p(start = A | label = location) = C(start=A,label=location)
C(label=location)+|start values| = 0+1

6+6 = 1
12 = 0.08

– p(start = A | label = person) = C(start=A,label=person)
C(label=person)+|start values| = 1+1

4+6 = 2
10 = 0.20

– No longer have zeros (this is essential)

– start = A relative probabilities are pushed closer together than end = ia since there is
less evidence for either label

• The posterior

– p(label = location | start = A, end = ia)
= p(label = location) · p(start = A | label = location) · p(end = ia | label = location)
= 0.6 · 0.08 · 0.50 = 0.024

– p(label = person | start = A, end = ia)
= p(label = person) · p(start = A | label = person) · p(end = ia | label = person)
= 0.4 · 0.20 · 0.25 = 0.020

• Since 0.024 > 0.020, we pick the label location

• So smoothing fixed this classification example!
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5 Smoothing over unknowable things

• In the tennis example, we have four features, and all of their possible values are known.

• What happens if the set of possible values is unknown?

• What if we want to classify the word “Zambia” as a person or location?

– p+1(end = ia | location) = C(end=ia|location)+1
C(location)+|end values| = 4+1

6+4 = 5
10 = 0.50

– p+1(end = ia | person) = C(end=ia|person)+1
C(person)+|end values| = 1+1

4+4 = 2
8 = 0.25

– p+1(start = Z | location) = C(start=Z|location)
C(location)+|start values| = 0+1

6+6 = 1
12 = 0.08

– p+1(start = Z | person) = C(start=Z|person)
C(person)+|start values| = 0+1

4+6 = 1
10 = 0.10

• So where does start = Z fit in to the PD?

– p+1(start = B | location) = C(start=B|location)
C(location)+|start values| = 2+1

6+6 = 3
12 = 0.25

– p+1(start = M | location) = C(start=M |location)
C(location)+|start values| = 0+1

6+6 = 1
12 = 0.08

– p+1(start = L | location) = C(start=L|location)
C(location)+|start values| = 1+1

6+6 = 2
12 = 0.17

– p+1(start = N | location) = C(start=N |location)
C(location)+|start values| = 2+1

6+6 = 3
12 = 0.25

– p+1(start = E | location) = C(start=E|location)
C(location)+|start values| = 1+1

6+6 = 2
12 = 0.17

– p+1(start = A | location) = C(start=A|location)
C(location)+|start values| = 0+1

6+6 = 1
12 = 0.08

– p+1(start = Z | location) = C(start=Z|location)
C(location)+|start values| = 0+1

6+6 = 1
12 = 0.08

– But (3 + 1 + 2 + 3 + 2 + 1 + 1)/12 = 13/12!

– We had to add |start values| to the denominator to keep the PD valid, but we failed.

– We should have accounted for Z by adding it to the set of start values

– So how many unseen start values are there? A-Z? Plus a-z? Plus A-Ω?

– Sometimes we don’t know how many possible values there are. Like when its all of the
words.

– Add-λ smoothing doesn’t handle this nicely.

– Solution? Use the set of known values and hope for the best.

6 Features occurring more than once per instance

• Up to this point we have only worked with instances that have exactly one value of each
feature per instance.

• But sometimes we want to classify data that has feaures that appear multiple times per
instance, possibly with the same values.

• A canoncial example of this is when we are classifying text and we simply use the words in
the text as features.
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• The dataset:

the movie was great and the acting was great , so i loved it, positive

i loved the movie dispite the terrible acting, positive

the plot was great , but overall it was terrible, negative

that movie was terrible, negative

the movie had a terrible ending, but was great anyway, positive

what a terrible movie, negative

i’ve never seen anything so terrible, negative

• Could have stopwords removed and be transformed to:

word=movie,word=great,word=acting,word=great,word=loved,5words=true,positive

word=loved,word=movie,word=terrible,word=acting,5words=true,positive

word=plot,word=great,word=terrible,5words=true,negative

word=movie,word=terrible,5words=false,negative

word=movie,word=terrible,word=ending,word=great,5words=true,positive

word=terrible,word=movie,5words=false,negative

word=terrible,5words=true,negative

• 2 features: word and 5words

Counting with duplicate features

• If a feature can appear multiple times per instance, we have to count them all

• So the full counts are C(feature = F, label = L).

• But we also need to make our probability calculation more precise

• Before, we said: p(feature = F | label = L) = C(feature=F,label=L)
C(label=L)

– This would mean, for our data:

– p(word = great | label = positive) = C(word=great,label=positive)
C(label=positive) = 3

3 = 1.0

– This would mean that if the instance is positive, then it definitely has “great” in it...
which is false.

– Moreover, this would not make a valid probability distribution, since there are other
words that also appear with positive.

– The probability is wrong because we counted multiple word features per instance, but
only one label feature per instance.

• Since there is no longer one feature of each time per instance, we have to make our probability
calculations more precise.

• p(feature = F | label = L) = C(feature=F,label=L)∑
f C(feature=f,label=L)

– So we are no longer dividing the number of instance with the label and feature by the
number of instances with the label.
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– Instead, we have to count the number of (label,value) pairs extracted from the data for
the particular feature, including multiple identical pairs in the same instance

• The probability p(feature = F | label = L) is the proportion of times the particular feature
was F in an instance with label L out of the total number of times the particular feature
appeared in an instance with label L

• p(word = great | label = positive) = C(word=great,label=positive)∑
f C(word=f,label=positive) = 3

13 = 0.23

p(word = great | label = negative) = C(word=great,label=negative)∑
f C(word=f,label=negative) = 1

8 = 0.13

• Note that we still calculate the prior the same way: percentage of instances that have the
particular label.

7 Evaluating

• How do we tell if our classifier works?

– Evaluating on the training data doesn’t tell us about performance on new data

• How do we set hyper-parameters (e.g. λ) without cheating?

– Tuning them to the test set wouldn’t tell us about performance on new data

Data Split

• Divide labeled data into three groups: train, development (dev), and test

• Use only the train data to set parameters (take counts)

• Test against the dev data using various choices for hyper-parameters (e.g. λ) to figure out
the best settings.

• When all development is done, and you are ready to get final results for publication, evaluate
just once on the test data, and record the results as your final results.

Data Size

• Larger training set means that we will have better count estimates and, therefore, better
model parameter estimates

• Larger dev and test sets mean that we can trust the results more

Accuracy

• Proportion of test instances that are labeled correctly: C(correct)
C(total)

• 100 instances, 70 correctly labeled: 70% correct

• Simple and intuitive, but can be misleading
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• 100 instances, 80 are not spam

– If the system just always outputs not spam, then accuracy is 80%

– But the model is worthless!

Precision and Recall

• Precision: Out of those that we labeled “spam”, what proportion are actually spam?
p(is spam | says “spam”)

• Recall: Out of those that are actually spam, what proportion did we correctly label as “spam”?
p(says “spam” | is “spam”)

• Categorize kinds of correctness and mistakes for spam
true positive (tp): model says “spam”, actually spam
false positive (fp): model says “spam”, actually not spam
false negative (fn): model says “not spam”, actually spam
true negative (tn): model says “not spam”, actually not spam

• precision = tp
tp+fp recall = tp

tp+fn

• F1-score: A way of combining precision and recall into one number (using the harmonic mean)

– F1 = 2 · P ·R
P+R

• 100 instances:

– P & R on spam
model says

spam not spam

truth
spam TP = 20 FN = 10

not spam FP = 15 TN = 55

∗ Accuracy is 0.75

∗ Precision = tp
tp+fp = 20

20+15 = 0.57

∗ Recall = tp
tp+fn = 20

20+10 = 0.67

∗ F1 = 2 · P ·R
P+R = 2 · 0.57·0.67

0.57+0.67 = 0.62

– P & R on not spam
model says

spam not spam

truth
spam TN = 20 FP = 10

not spam FN = 15 TP = 55

∗ Accuracy is 0.75

∗ Precision = tp
tp+fp = 55

55+10 = 0.85

∗ Recall = tp
tp+fn = 55

55+15 = 0.79

∗ F1 = 2 · P ·R
P+R = 2 · 0.85·0.79

0.85+0.79 = 0.89
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• 100 instances, 80 are not spam, and the system just always outputs not spam

– P & R on spam
model says

spam not spam

truth
spam TP = 0 FN = 20

not spam FP = 0 TN = 80

∗ Accuracy is 0.80

∗ Precision = tp
tp+fp = 0

0+0 = NaN

∗ Recall = tp
tp+fn = 0

0+20 = 0.0

∗ F1 = 2 · P ·R
P+R = ?

– P & R on not spam
model says

spam not spam

truth
spam TN = 0 FP = 20

not spam FN = 0 TP = 80

∗ Accuracy is 0.80

∗ Precision = tp
tp+fp = 80

80+20 = 0.80

∗ Recall = tp
tp+fn = 80

80+0 = 1.00

∗ F1 = 2 · P ·R
P+R = 2 · 0.80·1.00

0.80+1.00 = 0.89

8 Semi-Supervised Learning for Näıve Bayes

• At this point, we know how to train a näıve Bayes classifier from fully-supervised data (every
training instance has a label)

• Can we use (lots of) unlabeled data to improve a NB classifier trained on just a small amount
of labeled data?

• Can we learn a NB classifier with out any labeled data?

An excellent tutorial that carefully explains everything necessary to implement Gibbs sampling for
näıve Bayes:

• Philip Resnik and Eric Hardisty. “Gibbs Sampling for the Uninitiated”. June 2010.
http://www.cs.umd.edu/~hardisty/papers/gsfu.pdf

Partial Supervision: The Idea

• We know how to use NB to classify if we have labeled data

• If we have unlabeled data, we can assign labels to all the instances, then it because labeled
data, and we can use it for NB
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• We don’t want to just assign labels and assume that they are correct

• So we will make initial guesses for those labels, and iteratively revise them

• Critically, we won’t revise by simply picking the most likely label. We will choose probabilis-
tically, based on the relatively probaiblities of the different labels.

The Algorithm

1. Make a NB classifier from any labeled data available.

2. For each unlabeled instance:

a. Use this classifier to calculate the probabilities of each label.

b. Make a probabilty distribution out of all label probabilties (normalize them so that they
add up to 1.0)

c. Sample from the probability distribution by choosing a label with likelihood according
to its probability

d. Assign that chosen label as the label for the instance

3. For some large number of iterations, for each unlabeled instance:

a. Make a NB classifier from all the instances and their current labels.

c. Use this classifier to calculate the probabilities of each label.

c. Make a probabilty distribution out of all label probabilties (normalize them so that they
add up to 1.0)

d. Sample from the probability distribution by choosing a label with likelihood according
to its probability

e. Assign that chosen label as the revised label for the instance

f. Copy the instance with its new label into a “repository” of labeled instances.

4. Make a final NB classifier from all of the labeled instances in the “repository” that we built
up while we were sampling.

• We don’t revise the labels of the supervised instances because we assume that they are correct
(unless we don’t trust them, or think they are out-of-date).

• Always making probabilistic label choices prevents us from just accepting the MLE and getting
stuck.

• The choices will allow us to “walk” around the space of labels, where most of the walking
happens in area that lead to better parameters.

Why does this work?

• Basically, it learns how group associated feature values together, and how to push different
labels apart.

• We start with a “best guess” based on information we have, and revise our guesses over time.
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• We don’t just walk “uphill” based on the MLE.

• Instead we allow ourselves to explore lots of label choices, some of which may be very different
from the MLE.

• As we become more confident in a judgement, its label is less likely to change because more
of the similar instances will be using that label, which gives it a high probability.

Markov Chain Monte Carlo

• Markov: Uses the “Markov principle” which says to make decisions based only on recent
information

– We use only the current set of labels, not the full history of labels.

• Chain: Start with an initial set of labels, use it to change one label, then move to the next
label and change it based on the new set of labels. Repeat for a long time.

• Monte Carlo: Each step in the chain has chance involved

– We choose the next label by chance according to the relative probabilities of the labels.

– Named for Monte Carlo in Monaco and the Monte Carlo Casino

9 Clustering

• Until now, all our classifiers have been learned from fully-supervised data (every training
instance has a label)

• Can we learn a classifier when we have no labels at all?

• Clustering is when we try to automatically induce groupings without labels.

K-Means

1. Plot all instances in space

2. Choose K of them to be initial centroids

3. For each instance, associate it with its nearest centroid

4. Update each centroid to the centroid of its currently-assocated instances

5. Repeat step 3-4 until the centroids stop moving

6. For new instances, classify based on their nearest centroid
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