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Abstract First-order logic provides a powerful and flexible mechanism for repre-
senting natural language semantics. However, it is an open question of how best to
integrate it with uncertain, weighted knowledge, for example regarding word mean-
ing. This paper describes a mapping between predicates of logical form and points
in a vector space. This mapping is then used to project distributional inferences to
inference rules in logical form. We then describe first steps of an approach that uses
this mapping to recast first-order semantics into the probabilistic models that are
part of Statistical Relational AI. Specifically, we show how Discourse Representa-
tion Structures can be combined with distributional models for word meaning in-
side a Markov Logic Network and used to successfully perform inferences that take
advantage of logical concepts such as negation and factivity as well as weighted
information on word meaning in context.

1 Introduction

Logic-based representations of natural language meaning have a long history (Mon-
tague, 1970; Kamp and Reyle, 1993). Representing the meaning of language in a
first-order logical form is appealing because it provides a powerful and flexible way
to express even complex propositions. However, systems built solely using first-
order logical forms tend to be very brittle as they have no way of integrating uncer-
tain knowledge. They, therefore, tend to have high precision at the cost of low recall
(Bos and Markert, 2005).

Recent advances in computational linguistics have yielded robust methods that use
statistically-driven weighted models. For example, distributional models of word
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meaning have been used successfully to judge paraphrase appropriateness by repre-
senting the meaning of a word in context as a point in a high-dimensional seman-
tics space (Erk and Padó, 2008; Thater et al., 2010; Reisinger and Mooney, 2010;
Dinu and Lapata, 2010; Van de Cruys et al., 2011). However, these models only
address word meaning, and do not address the question of providing meaning rep-
resentations for complete sentences. It is a long-standing open question how best to
integrate the weighted or probabilistic information coming from such modules with
logic-based representations in a way that allows for reasoning over both. See, for
example, Hobbs et al. (1993).

The goal of this work is to establish a formal system for combining logic-based
meaning representations with weighted information into a single unified framework.
This will allow us to obtain the best of both situations: we will have the full expres-
sivity of first-order logic and be able to reason with probabilities. We believe that
this will allow for a more complete and robust approach to natural language under-
standing.

While this is a large and complex task, this paper proposes first steps toward our goal
by presenting a mechanism for injecting distributional word-similarity information
from a vector space into a first-order logical form. We define a mapping from pred-
icate symbols of logical form to points in vector space. Our main aim in linking
logical form to a vector space in this paper is to project inferences from the vector
space to logical form. The inference rules that we use are based on substitutability.
In a suitably constructed distributional representation, distributional similarity be-
tween two words or expressions A and B indicates that B can be substituted for A in
text (Lin and Pantel, 2001). This can be described through an inference rule A→ B.
Distributional information can also be used to determine the degree η to which the
rule applies in a given sentence context (Szpektor et al., 2008; Mitchell and Lapata,
2008; Erk and Padó, 2008; Thater et al., 2010; Reisinger and Mooney, 2010; Dinu
and Lapata, 2010; Van de Cruys et al., 2011). This degree η can be used as a weight
on the inference rule A→ B.

In this paper, we first present our formal framework for projecting inferences from
vector space to logical form. We then show how that framework can be applied to a
real logical language and vector space to address issues of ambiguity in word mean-
ing. Finally, we show how the weighted inference rules produced by our approach
interact appropriately with the first-order logical form to produce correct inferences.

Our implementation uses Markov Logic Networks (MLN) (Richardson and Domin-
gos, 2006) as the underlying engine for probabilistic inference. We are able to
demonstrate that an MLN is able to properly integrate the first-order logical rep-
resentation and weighted inference rules so that inferences involving correct word
sense are assessed as being highly probable, inferences involving incorrect word
sense are determined to be low probability, and inferences that violate hard logical
rules are determined to have the lowest probability.



2 Background

Textual entailment. Recognizing Textual Entailment (RTE) is the task of determin-
ing whether one natural language text, the premise, implies another, the hypothesis.
For evaluation of our system, we have chosen to use a variation on RTE in which
we assess the relative probability of entailment for a of set of hypotheses.

We have chosen textual entailment as the mode of evaluation for our approach be-
cause it offers a good framework for testing whether a system performs correct anal-
yses and thus draws the right inferences from a given text. As an example, consider
(1) below.

(1) p: The spill left a stain.
h1: The spill resulted in a stain.
h2*: The spill fled a stain.
h3*: The spill did not result in a stain.

Here, hypothesis h1 is a valid entailment, and should be judged to have high proba-
bility by the system. Hypothesis h2 should have lower probability since it uses the
wrong sense of leave and h3 should be low probability because the logical operator
not has reversed the meaning of the premise statement.

While the most prominent forum using textual entailment is the Recognizing Tex-
tual Entailment (RTE) challenge (Dagan et al., 2005), the RTE datasets do not test
the phenomena in which we are interested. For example, in order to evaluate our
system’s ability to determine word meaning in context, the RTE pair would have
to specifically test word sense confusion by having a word’s context in the hypoth-
esis be different from the context of the premise. However, this simply does not
occur in the RTE corpora. In order to properly test our phenomena, we construct
hand-tailored premises and hypotheses based on real-world texts.

Logic-based semantics. Boxer (Bos et al., 2004) is a software package for wide-
coverage semantic analysis that provides semantic representations in the form of
Discourse Representation Structures (Kamp and Reyle, 1993). It builds on the C&C
CCG parser (Clark and Curran, 2004).

Bos and Markert (2005) describe a system for Recognizing Textual Entailment
(RTE) that uses Boxer to convert both the premise and hypothesis of an RTE pair
into first-order logical semantic representations and then uses a theorem prover to
check for logical entailment.

Distributional models for lexical meaning. Distributional models describe the
meaning of a word through the context in which it appears (Landauer and Dumais,
1997; Lund and Burgess, 1996), where contexts can be documents, other words, or
snippets of syntactic structure. Based on the hypothesis that words that are similar
in meaning will occur in similar contexts (Harris, 1954; Firth, 1957), distributional



models predict semantic similarity between words based on distributional similar-
ity. They can be learned in an unsupervised fashion. Recently distributional models
have been used to predict the applicability of paraphrases in context (Erk and Padó,
2008; Thater et al., 2010; Reisinger and Mooney, 2010; Dinu and Lapata, 2010; Van
de Cruys et al., 2011). For example, in “The spill left a stain”, result in is a better
paraphrase for leave than flee, because of the context of spill and stain. In the sen-
tence “The suspect left the country”, the opposite is true: flee is a better paraphrase.
Usually, the distributional representation for a word mixes all its usages (senses).
For the paraphrase appropriateness task, these representations are then reweighted,
extended, or filtered to focus on contextually appropriate usages.

Markov Logic.

In order to perform logical inference with weights, we draw from the large and
active body of work related to Statistical Relational AI (Getoor and Taskar, 2007).
Specifically, we make use of Markov Logic Networks (MLNs) (Richardson and
Domingos, 2006) which employ weighted graphical models to represent first-order
logical formulas. MLNs are appropriate for our approach because they provide an
elegant method of assigning weights to first-order logical rules, combining a diverse
set of inference rules, and performing probabilistic inference.

An MLN consists of a set of weighted first-order clauses. It provides a way of soft-
ening first-order logic by making situations in which not all clauses are satisfied less
likely, but not impossible (Richardson and Domingos, 2006). More formally, if X is
the set of all propositions describing a world (i.e. the set of all ground atoms), F is
the set of all clauses in the MLN, wi is the weight associated with clause fi ∈ F , G fi
is the set of all possible groundings of clause fi, andZ is the normalization constant,
then the probability of a particular truth assignment x to the variables in X is defined
as:

P(X = x) =
1
Z

exp

 ∑
fi∈F

wi ∑
g∈G fi

g(x)

=
1
Z

exp

(
∑

fi∈F
wini(x)

)

where g(x) is 1 if g is satisfied and 0 otherwise, and ni(x) = ∑g∈G fi
g(x) is the

number of groundings of fi that are satisfied given the current truth assignment
to the variables in X . This means that the probability of a truth assignment rises
exponentially with the number of groundings that are satisfied.

Markov Logic has been used previously in other NLP applications (e.g. Poon and
Domingos (2009)). However, this paper differs in that it is an attempt to represent
deep logical semantics in an MLN.

While it is possible to learn rule weights in an MLN directly from training data,
our approach at this time focuses on incorporating weights computed by external
knowledge sources. Weights for word meaning rules are computed from the distri-
butional model of lexical meaning and then injected into the MLN. Rules governing
implicativity are given infinite weight (hard constraints).



We use the open source software package Alchemy (Kok et al., 2005) to perform
MLN inference.

3 Linking logical form and vector spaces

In this section we define a link between logical form and vector space representa-
tions through a mapping function that connects predicates in logical form to points
in vector space. Gärdenfors (2004) uses the interpretation function for this purpose,
such that logical formulas are interpreted over vector space representations. How-
ever, the conceptual spaces that he uses are not distributional. Their dimensions are
qualities, like the hue and saturation of a color or the taste of a fruit. Points in a
conceptual space are, therefore, potential entities. In contrast, the vector spaces that
we use are distributional in nature, and, therefore, cannot be interpreted as poten-
tial entities. A point in such a space is a potential word, defined through its ob-
served contexts. For this reason, we define the link between logical form and vector
space through a second mapping function independent of the interpretation function,
which we call the lexical mapping function.

Lexical mapping and inference projection

Let V be a vector space whose dimensions stand for elements of textual context. We
also write V for the set of points in the space. We assume that each word is repre-
sented as a point in vector space.1 The central relation in vector spaces is semantic
similarity. We represent this through a similarity function

sim : V ×V → [0,1]

that maps each pair of points in vector space to their degree of similarity. While most
similarity functions in the literature are symmetric, such that sim(~v,~w) = sim(~w,~v),
our definition also accommodates asymmetric similarity measures like Kotlerman
et al. (2010).

We link logical form and a vector space through a function that maps every predicate
symbol to a point in space. Let L be a logical language. For each n ≥ 0, let the set
of n-ary predicate symbols of L be Pn

L, and let PL = ∪n≥0Pn
L. Let V be a vector

space. Then a lexical mapping function from L to V is a function ` : PL→V .

1 The assumption of a single vector per word is made for the sake of simplicity. If we want to cover
models in which each word is represented through multiple vectors (Reisinger and Mooney, 2010;
Dinu and Lapata, 2010), this can be done through straightforward extensions of the definitions
given here.



A central property of distributional vector spaces is that they can predict similarity
in meaning based on similarity in observed contexts (Harris, 1954). Lin and Pantel
(2001) point out that in suitably constrained distributional representations, distribu-
tional similarity indicates substitutability in text. If two words v and w are similar in
their observed contexts, then w can be substituted for v in texts. This can be written
as an inference rule v→ w, weighted by sim(~v,~w).

We use this same idea to project inference rules from vector space to logical form
through the lexical mapping function. If the lexical mapping function maps the n-ary
predicate P to~v and the n-ary predicate Q to ~w, and sim(~v,~w) = η , then we obtain
the weighted inference rule ∀x1, . . . ,xn[P(x1, . . . ,xn) → Q(x1, . . .xn)] with weight
η . More generally, let L be a logical language with lexical mapping ` to a vec-
tor space V . Let sim be the similarity function on V . For all Q ∈ PL and Q ⊆ PL,
let ζ (Q,Q)⊆Q. Then the inference projection for the predicate P ∈ Pn

L is

Πsim,ζ ,`(P) = {(F,η) | ∃Q ∈ ζ (P,Pn
L) [

F = ∀x1, . . . ,xn[P(x1, . . . ,xn)→ Q(x1, . . . ,xn)],

η = sim
(
`(P), `(Q)

)
]}

That is, the inference projection for P is the set of all weighted inference rules
(F,η) predicted by the vector space that let us infer some other predicate Q from
P. Additionally, we may have information on the inferences that we are willing to
project that is not encoded in the vector space. For example we may only want to
consider predicates Q that stand for paraphrases of P. For this reason, the function
ζ can be used to limit the predicates Q considered for the right-hand sides of rules.
If ζ (P,Pn

L) = Pn
L, then a rule will be generated for every Q ∈ Pn

L.

Addressing polysemy

When a word is polysemous, this affects the applicability of vector space-based
inference rules. Consider the rule ∀e[ f ix(e)→ correct(e)] (any fixing event is a cor-
recting event): This rule applies in contexts like “fix a problem”, but not in contexts
like “fix the date”. We therefore need to take context into account when consider-
ing inference rule applicability. We do this by computing vector representations for
word meaning in context, and predicting rule applicability based on these context-
specific vectors. We follow the literature on vector space representations for word
meaning in context (Erk and Padó, 2008; Thater et al., 2010; Reisinger and Mooney,
2010; Dinu and Lapata, 2010; Van de Cruys et al., 2011) in assuming that a word’s
context-specific meaning is a function of its out-of-context representation and the
context. The context may consist of a single item or multiple items, and (syntactic
or semantic) relations to the target word may also play a role (Erk and Padó, 2008;
Thater et al., 2010; Van de Cruys et al., 2011).



We first define what we mean by a context. Given a vector space V and a finite
set R of semantic relations, the set C(V,R) of contexts over V and R consists of all
finite sets of pairs from V ×R. That is, we describe the context in which a target
word occurs as a finite set of pairs (~v,r) of a context item~v represented as a point in
vector space, and the relation r between the context item and the target. For a word
w in a context c ∈C(V,R), the context-specific meaning ~wc of w is a function of the
out-of-context vector ~w for w and the context c:

~wc = α(~w,c)

The function α is a contextualization function with signature α : V ×C(V,R)→V .

This definition of contextualization functions is similar to the framework of Mitchell
and Lapata (2008), who define the meaning ~p of a two-word phrase p = vw as a
function of the vectors for v and w, and their syntactic relation r in the text: ~p =
f (~v,~w,r,K), where f is some function, and K is background knowledge. However,
we use contextualization functions to compute the meaning of a word in context,
rather than the meaning of a phrase. We map predicate symbols to points in space,
and predicate symbols need to map to word meanings, not phrase meanings. Also,
Mitchell and Lapata only consider the case of two-word phrases, while we allow for
arbitrary-size contexts.

In existing approaches to computing word meaning in context, bag-of-words repre-
sentations or syntactic parses of the sentence context are used to compute the con-
textualization. In contrast, we use the logical form representation, through a function
that maps a logic formula to a context in C(V,R). Given a logical language L, a vec-
tor space V , and set R of semantic relations, a context mapping is a function that
computes the context c ∈C(V,R) of a predicate P in a formula G as

c = κ(P,G)

The signature of a context mapping function is κ : PL×L→C(V,R).

We can now compute a context-specific vector space representation ~wP,G for a pred-
icate P in a formula G from the context-independent vector `(P) and the context
κ(P,G). It is

~wP,G = α
(
`(P),κ(P,G)

)
To obtain an inference projection for P that takes into account its context in the
formula G, we adapt the lexical mapping function. Given a lexical mapping `, let
`[Q/~v] be the function that is exactly like ` except that it maps Q to ~v. Let Πsim,ζ ,`

be an inference projection for vector space V and logical language L, let α be a
contextualization function on V and R, and κ a context mapping from L to C(V,R).
Then the contextualized inference projection for predicate P ∈Pn

L in formula G ∈L
is

Π
G
sim,ζ ,`(P) = Πsim,ζ ,`[P/α(`(P),κ(P,G))

(P)



In this contextualized inference projection, any rule ∀x1, . . . ,xn[P(x1, . . . ,xn) →
Q(x1, . . . ,xn)] is weighted by similarity sim(α(`(P),κ(P,G)), `(Q)) between the
context-specific vector for P and the vector for Q. This follows common practice
in vector space models of word meaning in context of computing a context-specific
representation of the target, but not the paraphrase candidate. But if the paraphrase
candidate is polysemous, it may be useful to compute a representation for it that
is also specific to the sentence context at hand (Erk and Padó, 2010). We can do
this by defining a lexical mapping γP,G specific to predicate P and formula G by
γP,G(Q) = α

(
`(Q),κ(P,G)

)
. Then we can compute the contextualized inference

projection of P as Π G
sim,ζ ,`

(P) = Πsim,ζ ,γP,G(P).

In computational semantics, polysemy is mostly addressed by using multiple predi-
cates. For example, for the noun “bank” there would be predicates bank1, bank2 to
cover the financial and riverside senses of the word. In contrast, we use a separate
predicate for each word token, but these predicates are not associated with any par-
ticular fixed senses. Instead, we vary the lexical mapping of a predicate based on
the formula that it appears in: A predicate P in a formula G is mapped to the vector
α
(
`(P),κ(P,G)

)
, which depends on G. We make this change for two reasons. First,

a system that uses distinct predicates bank1, bank2 has to rely on an external word
sense disambiguation system that decides, during semantics construction, which of
the senses to use. In contrast, we determine lexical meaning based on the overall se-
mantic representation of a sentence, directly linking sentence semantics and lexical
semantics. Second, in the case of polysemy, the senses to distinguish are not always
that clear. For example, for a noun like “onion”, should the vegetable sense and the
plant/bulb sense be separate (Krishnamurthy and Nicholls, 2000)? Through the vec-
tor space model, we can model word meaning in context without ever referring to
distinct dictionary senses (Erk, 2010). But if we do not want to consider a fixed list
of senses for a word w, then we also cannot represent its meanings through a fixed
list of predicates.

4 Transforming natural language text to logical form

In transforming natural language text to logical form, we build on the software pack-
age Boxer (Bos et al., 2004). Boxer is an extension to the C&C parser (Clark and
Curran, 2004) that transforms a parsed discourse of one or more sentences into a se-
mantic representation. Boxer outputs the meaning of each discourse as a Discourse
Representation Structure (DRS) that closely resembles the structures described by
Kamp and Reyle (1993).

We chose to use Boxer for two main reasons. First, Boxer is a wide-coverage system
that can deal with arbitrary text. Second, the DRSs that Boxer produces are close to
the standard first-order logical forms that are required for use by the MLN software
package Alchemy. Our system interprets discourses with Boxer, augments the re-



sulting logical forms by adding inference rules, and outputs a format that the MLN
software Alchemy can read.

5 Ambiguity in word meaning

In order for our system to be able to make correct natural language inferences, it
must be able to handle paraphrasing. For example, in order to license the entailment
pair in (2), the system must recognize that “owns” is a valid paraphrase for “has”,
and that a “car” is type of “vehicle”:

(2) p: Ed owns a car.
h: Ed has a vehicle.

We address this problem as described in Section 3: We use distributional informa-
tion to generate inferences stating, for example, that “has” can be substituted for
“owns”. This inference is weighted by the degree to which “owns”, in the context in
which it is used in (2), is similar to “has”. To integrate these inference rules with the
logical form representations of sentences like (2), we use the formalism introduced
in Section 3. We now describe how we instantiate it in the current paper.

First, we generate a vector space V . We have chosen to implement a very simple
vector space based on a bag-of-words representation of context. To ensure that the
entries in the vector space correspond to the predicates in our logical forms, we
first lemmatize all sentences in our corpus using the same lemmatization process
as Boxer. The features used by V are the N most frequent lemmas, excluding stop-
words. To calculate the vector in V for a lemma, we count the number of times the
lemma appears in the same sentence as each feature, and then calculate the point-
wise mutual information (PMI) between the lemma and each feature. The resulting
PMI values for each feature are used as the vector for the lemma.

As the similarity function sim on our vector space, we use cosine similarity. For two
vectors~v and ~w, their similarity is

sim(~v,~w) = cosine(~v,~w) =
~v ·~w
‖~v‖ ‖~w‖

Logical forms in our system are generated by Boxer, so our logical language L is
the set of formulas that may be returned from Boxer (modulo some modifications
described in Section 6). Likewise, the set of predicate symbols PL are the predi-
cates generated by Boxer. Boxer’s predicates, as represented by the pred relation
in Boxer’s Prolog output,2 consist of a word lemma and a token index indicating the

2 See http://svn.ask.it.usyd.edu.au/trac/candc/wiki/DRSs for the detailed
grammar of Boxer DRS output.



original token that generated that predicate. Our lexical mapping function maps each
predicate symbol to the vector that represents the lemma portion of the predicate.

In order to assess the similarity between a word’s context and a possible replacement
word, we must define a context mapping that generates a context from a predicate
P ∈ PL and a formula G ∈ L. For the current paper we use the simplest possible
definition for κ , which ignores semantic relations. We define the context of P as the
vectors of all predicates Q that occur in the same sentence as P. Since every pred-
icate in a logical form returned by Boxer is indexed with the sentence from which
it was generated, we can define a simple context mapping that defines a predicate’s
context solely in terms of the other predicates generated by Boxer for that sentence.

κ(P,G) = {(same-sentence, `(Q)) | Q is a predicate found in G,

Q’s sentence index = P’s sentence index, and
Q 6= P}

Note that the only predicates Q that are used are those derived from the lemmas
of words found in the text. Meta-predicates representing relations such as agent,
patient, and theme are not included.

The context mapping κ computes a context for a predicate P occurring in a formula
G. Next we require a contextualization function that uses the context returned by κ

to compute a context-specific vector for P. Again we use the simplest instantiation
possible. Our contextualization function just computes the sum of the vectors for
each lemma in the context

α(~v,c) = ∑
(ri,~wi)∈c

~wi

Other, more complex instantiations of κ and α are possible. We comment on this
further in Section 8.

Based on these definitions, we compute the contextualized inference projection
Π G

sim,ζ ,`
(P), the set of weighted inference rules mapping predicate P to its poten-

tial replacements, as described in Section 3.

Finally, in order to limit the number of inference rules generated in the inference
projection, we define a restriction function ζ that specifies, for a predicate P ∈ Pn

L,
which of the predicates in Pn

L may serve as replacements. Our system uses Word-
Net (Miller, 2009) to restrict substitutions only to those predicates representing syn-
onyms or hypernyms of the lemma underlying P. So, for a predicate P ∈ Pn

L and a
set of predicates Q⊆Pn

L, we define ζ as

ζ (P,Q) = {Q ∈Q | Q’s lemma is a synonym of, a hypernym of, or equal to P’s}



A lexical ambiguity example

Assume we have sentence (3), which is parsed by C&C and translated into DRT by
Boxer, as shown in Figure 1.

(3) p: A stadium craze is sweeping the country.
h1: A craze is covering the nation.
h2*: A craze is brushing the nation.

sweep

craze

a stadium

det ncmod

is country

the

det

ncsubj
aux

dobj

(a) Dependency output from C&C

x0 x1 e2 x3

stadium1002(x0)
nn(x0, x1)
craze1003(x1)
agent(e2, x1)
sweep1005(e2)
event(e2)
country1007(x3)
patient(e2, x3)

(b) DRT output from Boxer

Fig. 1: Dependency parse tree and DRT interpretation of the premise in (3)

The DRS in Figure 1b, a formula of logical language L, shall be denoted by G.
Formula G contains a unary predicate sweep1005. In order to generate weighted
substitution rules for sweep1005, we calculate the contextualized inference projection
of sweep1005: the set of inference rules mapping sweep1005 to each (unary) predicate
Q ∈ P1

L, with each rule weighted by the similarity of the vector representing the
context of sweep1005 in G to the vector representing the replacement Q. This is

Π
G
sim,ζ ,`(sweep1005) =

{(F,η) | ∃Q ∈ ζ (P,P1
L) [

F = ∀x.[sweep1005(x)→ Q(x)] and

η = sim
(
α(`(sweep1005),κ(sweep1005,G)), `(Q)

)
]}

Let us assume that our logical language L also includes unary predicates cover2004
and brush3004 and that the lemmas cover and brush are known to be synonyms of
sweep (though from different senses). In other words,

{cover2004, brush3004} ∈ ζ (sweep1005, P1
L)



So, in the calculation of Π G
sim,ζ `

(sweep1005), we will generate weighted inference
rules (F,η) for both cover2004 and brush3004. This will allow us to calculate the
probability of inference for both hypotheses in (3).

We look first at cover2004. The rule formula F is instantiated simply as

∀x.[sweep1005(x)→ cover2004(x)]

The weight η is the similarity between the context of sweep1005 in G, and cover2004.
The context vector for sweep1005 is calculated as

α(`(sweep1005),κ(sweep1005,G))

Since we defined the lexical mapping `(P) to simply return the vector from V for the
lemma portion of the predicate P, `(sweep1005) =

#          »sweep and `(cover2004) =
#        »cover.

The context of P in G, κ(P,G) is the set of a set of predicates and their relations to
P, so

κ(sweep1005,G) = {(`(stadium1002), same-sentence)}
(`(craze1003), same-sentence),

(`(country1007), same-sentence),

= {( #              »

stadium, same-sentence),

( #        »craze, same-sentence),

(
#             »country, same-sentence)}

We defined our contextualization function α(~v,c) to be the vector sum of word
vectors from the context c, so

α(`(sweep1005),κ(sweep1005,G)) = α( #          »sweep, {( #              »

stadium, same-sentence),

( #        »craze, same-sentence),

(
#             »country, same-sentence)})

=
#              »

stadium+ #        »craze+ #             »country

Finally, since we have the vector representing the context of sweep1005 in G and
the vector representing the replacement predicate cover2004, we can compute the
weight, η for our inference rule ∀x.[sweep1005(x)→ cover2004(x)] as

sim
(
α(`(sweep1005),κ(sweep1005,G)), `(Q)

)
= sim

( #              »

stadium+ #        »craze+ #             »country, #        »cover
)

= cosine
( #              »

stadium+ #        »craze+ #             »country, #        »cover
)



Likewise, the rule for replacing sweep1005 by brush3004 would be ∀x.[sweep1005(x)
→ brush3004(x)] weighted by cosine

( #              »

stadium+ #        »craze+ #             »country,
#        »

brush
)
.

Since, cosine
( #              »

stadium + #        »craze +
#             »country, #        »cover

)
> cosine

( #              »

stadium + #        »craze +
#             »country,

#        »

brush
)
, cover is considered to be a better replacement for sweep than

brush in the sentence “A stadium craze is sweeping the country”. Thus, the rule
∀x.[sweep1005(x)→ cover2004(x)] will be given more consideration during infer-
ence, and hypothesis h1 will be determined to be more probable than h2.

Hypernymy

According to our definition of ζ above, we construct inference rules of the form
∀x1, . . . ,xn[P(x1, . . . ,xn)→ Q(x1, . . .xn)] where Q is a synonym or hypernym of P.
Thus, for two synonyms A and B, we will generate rules A→ B and B→ A. How-
ever, for hypernym relationships, we only construct the inference rule entailing up
the hierarchy: from the hyponym to the hypernym. This is important for licensing
correct inferences. Consider example (4).

(4) p: Ed owns a car.
h: Ed has a vehicle.

Here the inference is valid since a car is a type of vehicle. For this pair, our system
will generate the rule ∀x[car(x)→ vehicle(x)] and assign a weight based on the sim-
ilarity of the lemma vehicle to the context of car in the premise sentence. However,
an inference in the reverse direction of (4) would be invalid, which is why we do not
generate the reverse inference rule.

With hypernymy, we can see how our system naturally integrates logical phenomena
with distributional information. In example (4), the distributional similarity between
vehicle and the context of car affects the overall probability of inference for the pair.
However, it does not override the logical requirements imposed by the hypernym
relationship: if the premise and hypothesis were reversed then it would not matter
how similar the words were since the inference would be impossible.

The logical rules generated for hypernyms work properly with other logical aspects
as well. For example, in (5) below we can see that the direction of entailment along
the hypernym hierarchy is reversed when the words appear in negative contexts. Our
system handles this correctly.

(5) p: Ed does not own a vehicle.
h: Ed does not have a car.



6 Implicativity

Implicativity and factivity are concerned with analyzing the truth conditions of
nested propositions (Nairn et al., 2006). For example, in the premise of the entail-
ment pair shown in example (6) below, the locking is the event that Ed forgot to do,
meaning that it did not happen. In example (7), build is the main verb of the com-
plement of hope, so we cannot infer that the building event occurred, nor can we
infer that it did not occur. Correctly recognizing nested propositions and analyzing
their contexts is necessary for preventing the licensing of entailments like (6) and
rejecting those like (7).

(6) p: Ed forgot to lock the door.3

h: Ed did not lock the door.

(7) p: The mayor hoped to build a new stadium.4

h: *The mayor built a new stadium.

Nairn et al. (2006) presented an approach to the treatment of inferences involving
implicatives and factives. Their approach identifies an “implication signature” for
every implicative or factive verb. This signature specifies the truth conditions for
the verb’s nested proposition, depending on whether the verb occurs in a positive or
negative environment. Following MacCartney and Manning (2009), we write impli-
cation signatures as “x/y” where x represents the entailment to which the speaker
commits in a positive environment and y represents entailment in a negative environ-
ment. Both x and y have three possible values: “+” for positive entailment, meaning
the nested proposition is entailed, “-” for negative entailment, meaning the negation
of the proposition is entailed, and “o” for “null” entailment, meaning that neither
the proposition nor its negation is entailed. Figure 2 gives concrete examples.5

signature example
forgot that +/+ he forgot that Dave left � Dave left

he did not forget that Dave left � Dave left
managed to +/- he managed to escape � he escaped

he did not manage to escape � he did not escape
forgot to -/+ he forgot to pay � he did not pay

he did not forget to pay � he paid
refused to -/o he refused to fight � he did not fight

he did not refuse to fight 2 {he fought, he did not fight}

Fig. 2: Implication Signatures

3 Example (6) is derived from examples by MacCartney and Manning (2009).
4 Example (7) is adapted from document wsj 0126 from the Penn Treebank.
5 Note that forget to and forget that have different implication signatures. As such, in order to select
the right signature, it is necessary to examine not simply the verb but the entire subcategorization
frame. To do this, we make use of the dependency parse generated by the C&C parser that is input
to Boxer.



Inferences with nested propositions

The standard conversion from DRT to first-order logic (FOL) (the one used by
Boxer) falls short in its analysis of nested propositions. Consider the entailment
pair “John did not manage to leave” and “John left”. The DRT interpretation of the
premise and its corresponding FOL conversion are shown in Figure 3.

x0

john1001(x0)

¬

e1 p2

manage1004(e1)
theme(e1, p2)
agent(e1, x0)

p2:

e3

leave1006(e3)
agent(e3, x0)

(a) DRT interpretation

∃ x0.[ john1001(x0) &

¬∃ e1p2.[ manage1004(e1) &

theme(e1, p2) &

agent(e1,x0) &

∃ e3.[ leave1006(e3) &

agent(e3,x0)]]]

(b) FOL translation

Fig. 3: Boxer’s DRT interpretation of “John did not manage to leave.”

It should be clear that “John did not manage to leave” does not entail “John left”
(and, in fact, entails the opposite). Unfortunately, the FOL formula shown in Figure
3b does entail the FOL representation of “John left”, which is

∃ x0 e1.[ john1001(x0) & leave1006(e1) & agent(e1,x0)]

The incorrect inference occurs here because the standard DRT-to-FOL translation
loses some information. DRT expressions are allowed to have labeled subexpres-
sions, such as p2 in Figure 3a that is used to reference the theme of the manage
event: the leave event. The FOL expression, on the other hand, shows that p2 is the
theme of event e1, but has no way of stating what p2 refers to.

In order to capture the information that the DRT labels provide, we modify the
DRT expression to contain explicit subexpression triggers. That is, for a sub-DRS A
labeled by p, we replace A with two new expressions in the same scope: POS(p)→A
and NEG(p)→¬A. The result of such a replacement on the DRS in Figure 3a can
be see in Figure 4a.

Now that our labeled subexpression has triggers, we can introduce inference rules to
activate those triggers. The purpose of these inference rules is to capture the behav-
ior dictated by the implication signature of the implicative or factive verb for which
the relevant subexpression is the theme. For example, according to the implication



x0

john1001(x0)

p2

¬
e1

manage1004(e1)
theme(e1, p2)
agent(e1, x0)

POS(p2) ⇒
e3

leave1006(e3)
agent(e3, x0)

NEG(p2) ⇒ ¬
e3

leave1006(e3)
agent(e3, x0)

(a) DRT interpretation with subexpres-
sion triggers

p

e

manage1004(e)
theme(e, p)

⇒ POS(p)

p

¬
e

manage1004(e)
theme(e, p)

⇒ NEG(p)

(b) Subexpression-triggering inference
rules for implicative “manage to” with
signature +/-

Fig. 4: First (insufficient) attempt at correcting for the loss of labeled sub-expression
information.

signature in Figure 2, the implicative manage to is positively entailing in positive
contexts and negatively entailing in negative contexts. This means that if John man-
aged to do what is described by p, then the event described by p occurred, or in
other words, the subexpression of p is true. Likewise, if John did not manage to do
what is described by p, then the event described by p did not occur, meaning that
the subexpression of p is false.

The triggering inference rules for managed to are shown in Figure 4b. The first rule,
for positive contexts, says that for all propositions p, if p is “managed”, then p’s
subexpression is true, so trigger the “positive entailment” subexpression which, in
our example, says that the leaving event occurred. The second rule, for negative
contexts, says that for all propositions p, if there is no “managing” of p, then p’s
subexpression is false, so trigger the “negative entailment” subexpression to say that
there is no event of leaving.

While this approach works for positive contexts, there is a subtle problem for nega-
tive contexts. The negative context rule in Figure 4b can be translated to FOL as

∀ p.[ ¬∃ e.[ manage1004(e)∧ theme(e, p)) ]→ NEG(p) ]



This expression is stating that for all propositions p, p is false if there is no “man-
aging” of p. Now, we want this inference rule to be used in cases where it is stated
that “managing” did not occur, such as in the expression of Figure 4a, where we see
that is is the case that

¬

e1
manage1004(e1)
theme(e1, p2)
agent(e1, x0)

which is equivalent to the FOL expression

¬∃ e1 [ manage1004(e1)∧ theme(e1, p2)∧agent(e1,x0) ]

stating that there is no “managing” of p2 by x0. However, the antecedent of our
negative context rule states that there is no “managing” of the proposition, so the
rule would only be used if it could be proven that there is no “managing” event at
all. Unfortunately, stating that p2 is not “managed” by x0 does not entail that p2 is
not “managed” at all since p2 could be managed by someone other than x0.

To overcome this problem, we modify our representation of a negated event. In-
stead of representing an event, such as the “managing” event, that did not occur
as ¬∃ e.[ manage(e) ], we represent it explicitly as an event of non-occurrence:
∃ e.[ not manage(e) ]. Applying this change to the DRS and inference rules in Fig-
ure 4, we arrive at our final form in Figure 5.

Using this strategy, we can see that the negative context rule is active when there
exists a “not-managing” state, and the representation of “John did not manage to
leave” explicitly requires that there is such an state, meaning that the rule will be
used in the inference. With all of these pieces in place, the inference works as ex-
pected.

Thus, we transform the output of Boxer in two ways. First, we identify any labeled
propositions and replace them with pairs of proposition triggers. Then, we modify
any negated DRSs by extracting the verb and theme atoms, changing the verb pred-
icate to a “not ” predicate6, and finally ensuring that all other expressions under
the negated DRS (aside from the labeled proposition itself), remain under a negated
DRS.

Once the sentence representations have been modified, we generate inference rules
for each implicative verb. If the verb is positively entailing in positive contexts, we
generate a rule of the form

∀ p.[ ∃ e.[ 〈verb〉(e)∧ theme(e, p)) ]→ POS(p) ]

6 The lexical mapping for these new predicates ignores the negation, i.e. `(not manage) =
`(manage).



x0

john1001(x0)

e1 p2

not manage1004(e1)
theme(e1, p2)

¬
agent(e1, x0)

POS(p2) ⇒
e3

leave1006(e3)
agent(e3, x0)

NEG(p2) ⇒

e3

not leave1006(e3)

¬
agent(e3, x0)

(a) DRT interpretation with subexpres-
sion triggers

p

e

manage1004(e)
theme(e, p)

⇒ POS(p)

p

e

not manage1004(e)
theme(e, p)

⇒ NEG(p)

(b) Subexpression-triggering inference
rules for implicative “manage to” with
signature +/-

Fig. 5: Explicit capturing of sub-expression information.

but if it is negatively entailing in positive contexts, we instead generate a rule of the
form

∀ p.[ ∃ e.[ 〈verb〉(e)∧ theme(e, p)) ]→ NEG(p) ]

If the verb is positively entailing in negative contexts, we generate a rule of the form

∀ p.[ ∃ e.[ not 〈verb〉(e)∧ theme(e, p)) ]→ POS(p) ]

but if it is negatively entailing in negative contexts, we instead generate a rule of the
form

∀ p.[ ∃ e.[ not 〈verb〉(e)∧ theme(e, p)) ]→ NEG(p) ]

If the verb is non-entailing in either positive or negative contexts, then we do not
generate a rule for that context polarity.

This approach works for arbitrarily long chains of nested implicatives and factives.
For example, consider the entailment in (8).



(8) Dave managed to fail to not forget to leave � Dave did not leave

Our approach is able to predict this entailment by correctly handling the three nested
implicatives along with the negation. Figure 6 shows the nested polarity environ-
ments and how the implicative verbs and negations modify the polarity. The top-
level verb managed to maintains its same polarity and predicts a positive environ-
ment for the fail to event. The fail to reverses the polarity for the not forget to
state. Since the negation of forget is in a negative environment, the negations can-
cel, putting forget in a positive environment, thus predicting a negative environment
for the leaving event. Since the leaving event is in a negative environment, we can
say that the sentence entails that the leaving did not occur.

+
+

−
+

−
Dave // managed to // fail to // not // forget to // leave

Fig. 6: Nested polarity environments showing how implicative verbs and negation
modify polarity.

Interaction with other phenomena

MacCartney and Manning (2009) extended the work by Nairn et al. (2006) in order
to correctly treat inference involving monotonicity and exclusion. Our approach to
implicativity and factivity combines naturally with hypernymy to ensure correct
entailment judgements. For example, no additional work is required to license the
entailments in (9).

(9) (a) John refused to dance � John didn’t tango

(b) John did not forget to tango � John danced

Likewise, no further work is needed for our implicativity and factivity approach
to interact correctly with our approach to ambiguity in word meaning. For exam-
ple, consider example (10). Here the premise contains the verb prevent in a posi-
tive context, which is negatively entailing. It also contains the word leave which is
synonymous with both result in and flee through different senses. As the example
shows, our approach is able to correctly handle the interaction between the lexical
ambiguity and the implicative verb.



(10) p: He prevented the spill from leaving a stain.

h1: The spill did not result in a stain.

h2*: The spill did not flee a stain.

h3*: The spill resulted in a stain.

In example (11), the prevent event is nested under the null-entailing verb try. As
such, neither alternate sense of leave is entailed since try says nothing about the
truth or falsity of its nested proposition.

(11) p: He tried to prevent the spill from leaving a stain.

h1*: The spill did not result in a stain.

h2*: The spill did not flee a stain.

h3*: The spill resulted in a stain.

7 Preliminary Evaluation

As a preliminary evaluation of our system, we constructed the set of demonstrative
examples included in this paper to test our system’s ability to handle the previously
discussed phenomena and their interactions. We ran each example with both a stan-
dard first-order theorem prover and Alchemy to ensure that the examples work as
expected. Note that since weights are not possible when running an example in the
theorem prover, any rule that would receive a non-zero weight in an MLN is simply
treated as a “hard clause” following Bos and Markert (2005). For the experiments,
we generated a vector space from the entire New York Times portion of the English
Gigaword corpus (Graff and Cieri, 2003).

The example entailments evaluated were designed to test the interaction between
the logical and weighted phenomena. For example, in (12), “fail to” is a negatively
entailing implicative in a positive environment, so according to the theorem prover,
p entails both h1 and h2. However, using our weighted approach, Alchemy outputs
that h1 is more probable than h2.

(12) p: The U.S. is watching closely as South Korea fails to honor U.S. patents7

h1: South Korea does not observe U.S. patents

h2*: South Korea does not reward U.S. patents

The first-order approach, which contains inference rules for both paraphrases as
hard clauses, cannot distinguish between good and bad paraphrases, and considers
both of them equally valid. In contrast, the weighted approach can judge the degree

7 Sentence adapted from Penn Treebank document wsj 0020.



of fit of the two potential paraphrases. Also, it does so in a context-specific manner,
choosing the paraphrase observe over reward in the context of patents.

Our ability to perform a full-scale evaluation is currently limited by problems in
the Alchemy software required to perform probabilistic inference. This is discussed
more in Section 8.

8 Future work

Our plans for continued work can be divided into two categories: work on the theo-
retical side and work on implementation and evaluation.

From a theoretical perspective, we have used a simplistic bag-of-words approach
for computing a context-specific vector for a predicate based on its formula con-
text (functions α and κ). We plan to move to a more informative construction that
takes semantic relations into account. This will be interesting in particular because
the relations that can be read off a logical form differ from those available in a de-
pendency parse. For example, we can check whether two predicates occur within
the same DRS, or whether they apply to a common variable. We can also ask what
influence different logical connectives have on perceived word meaning.

Additionally, up to this point we have only addressed word-level paraphrasing
with weighted lexical ambiguity rules that connect individual words. However, our
framework could easily be extended to allow for weighted paraphrase rules for
higher-order phrases such as noun-noun compounds, adjective-noun compounds,
or full noun phrases.

We would also like to extend our formalism to address a wider range of linguis-
tic phenomena. Many phenomena are better described using weights than through
categorial analyses, and first-order representations do not correctly address this. By
extending our framework, we hope to be able to apply weights derived from dis-
tributional information to a wide variety of modeled concepts. The inference rules
generated by our approach to factivity might be good candidates for this extension.
Nairn et al. (2006) proposed that there may be “degrees of factivity” based on the
context of the verb. Because the inference rules that we use to activate the presup-
position triggers are externalized, they can be weighted independently of the rest
of the semantic analysis. Right now the rules are either generated or not, which is
equivalent to assigning a weight of either 1 or 0, but a weighted approach could be
taken instead.

From an implementation perspective, we would like to run a large-scale evaluation
of our techniques. However, the major barrier to scaling up is that the Alchemy
software has severe inefficiencies in terms of memory requirements and speed. This
prevents us from executing larger and more complex examples. There is on-going



work to improve Alchemy (Gogate and Domingos, 2011), so we hope to be able to
make use of new probabilistic inference tools as they become available.

9 Conclusion

In this paper, we have defined a link between logical form and vector spaces through
a lexical mapping of predicate symbols to points in space. We address polysemy not
through separate predicate symbols for different senses of a word, but by using a
single predicate symbol with a lexical mapping that gets adapted to the context in
which the predicate symbol appears. We use the link to project weighted inferences
from the vector space to the logical form.

We showed how these weighted first-order representations can be used to perform
probabilistic first-order inferences using Markov Logic. We have shown how our ap-
proach handles three distinct phenomena, word meaning ambiguity, hypernymy, and
implicativity, as well as allowing them to interact appropriately. Most importantly
our approach allows us to model some phenomena with hard first-order techniques
and other phenomena with soft weights, and to do all of this within a single, unified
framework. The resulting approach is able to correctly solve a number of difficult
textual entailment problems that require handling complex combinations of these
important semantic phenomena.
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